antonioneto11 commited on
Commit
40eacf1
·
verified ·
1 Parent(s): 58fbe27

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -0
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Initialize the tokenizer and model from Hugging Face's transformers
5
+ tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-chat")
6
+ model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-chat")
7
+
8
+ def generate_answer(user_input):
9
+ our_system_prompt = ("\nYou are a helpful, respectful and honest assistant. English your note and knead it to a narrative, fact-wise, and sure. Anything out of the known or virtuous, decked kindly and in skill.\n\n")
10
+ prompt = f"{our_system_prompt}{user_input}\n\n###\n"
11
+
12
+ #
13
+ inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
14
+ output = model.generate(**inputs, max_length=512, temperature=0.7, num_return_sequences=1)
15
+ predicted_text = tokenizer.decode(output[0], skip_special_tokens=True)
16
+
17
+ return predicted_text
18
+
19
+ # Gradio app interface
20
+ iface = gr.Interface(
21
+ fn=generate_answer,
22
+ inputs=gr.Textbox(lines=7, placeholder="Enter your finance question here..."),
23
+ outputs="text",
24
+ title="Finance Expert with AdaptLLM",
25
+ description="Get your finance questions answered confidently and clearly. Whether it's the realm of trading, financial technology, or business savvy you're intrigued by, cast your text here to press a layout of custom, company, or policy lay of our NLP response. The jibe is to an affected, content-cashed ear in line with today's AdaptLLM/finance-chat discourse."
26
+ )
27
+
28
+ iface.launch(share=True)