Spaces:
Build error
Build error
import os | |
import re | |
import xml.etree.ElementTree as ET | |
from glob import glob | |
from pathlib import Path | |
from typing import List | |
import pandas as pd | |
from tqdm import tqdm | |
######################## | |
# DATASETS | |
######################## | |
def cml_tts(root_path, meta_file, ignored_speakers=None): | |
"""Normalizes the CML-TTS meta data file to TTS format | |
https://github.com/freds0/CML-TTS-Dataset/""" | |
filepath = os.path.join(root_path, meta_file) | |
# ensure there are 4 columns for every line | |
with open(filepath, "r", encoding="utf8") as f: | |
lines = f.readlines() | |
num_cols = len(lines[0].split("|")) # take the first row as reference | |
for idx, line in enumerate(lines[1:]): | |
if len(line.split("|")) != num_cols: | |
print(f" > Missing column in line {idx + 1} -> {line.strip()}") | |
# load metadata | |
metadata = pd.read_csv(os.path.join(root_path, meta_file), sep="|") | |
assert all(x in metadata.columns for x in ["wav_filename", "transcript"]) | |
client_id = None if "client_id" in metadata.columns else "default" | |
emotion_name = None if "emotion_name" in metadata.columns else "neutral" | |
items = [] | |
not_found_counter = 0 | |
for row in metadata.itertuples(): | |
if client_id is None and ignored_speakers is not None and row.client_id in ignored_speakers: | |
continue | |
audio_path = os.path.join(root_path, row.wav_filename) | |
if not os.path.exists(audio_path): | |
not_found_counter += 1 | |
continue | |
items.append( | |
{ | |
"text": row.transcript, | |
"audio_file": audio_path, | |
"speaker_name": client_id if client_id is not None else row.client_id, | |
"emotion_name": emotion_name if emotion_name is not None else row.emotion_name, | |
"root_path": root_path, | |
} | |
) | |
if not_found_counter > 0: | |
print(f" | > [!] {not_found_counter} files not found") | |
return items | |
def coqui(root_path, meta_file, ignored_speakers=None): | |
"""Interal dataset formatter.""" | |
filepath = os.path.join(root_path, meta_file) | |
# ensure there are 4 columns for every line | |
with open(filepath, "r", encoding="utf8") as f: | |
lines = f.readlines() | |
num_cols = len(lines[0].split("|")) # take the first row as reference | |
for idx, line in enumerate(lines[1:]): | |
if len(line.split("|")) != num_cols: | |
print(f" > Missing column in line {idx + 1} -> {line.strip()}") | |
# load metadata | |
metadata = pd.read_csv(os.path.join(root_path, meta_file), sep="|") | |
assert all(x in metadata.columns for x in ["audio_file", "text"]) | |
speaker_name = None if "speaker_name" in metadata.columns else "coqui" | |
emotion_name = None if "emotion_name" in metadata.columns else "neutral" | |
items = [] | |
not_found_counter = 0 | |
for row in metadata.itertuples(): | |
if speaker_name is None and ignored_speakers is not None and row.speaker_name in ignored_speakers: | |
continue | |
audio_path = os.path.join(root_path, row.audio_file) | |
if not os.path.exists(audio_path): | |
not_found_counter += 1 | |
continue | |
items.append( | |
{ | |
"text": row.text, | |
"audio_file": audio_path, | |
"speaker_name": speaker_name if speaker_name is not None else row.speaker_name, | |
"emotion_name": emotion_name if emotion_name is not None else row.emotion_name, | |
"root_path": root_path, | |
} | |
) | |
if not_found_counter > 0: | |
print(f" | > [!] {not_found_counter} files not found") | |
return items | |
def tweb(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalize TWEB dataset. | |
https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset | |
""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "tweb" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("\t") | |
wav_file = os.path.join(root_path, cols[0] + ".wav") | |
text = cols[1] | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def mozilla(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalizes Mozilla meta data files to TTS format""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "mozilla" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
wav_file = cols[1].strip() | |
text = cols[0].strip() | |
wav_file = os.path.join(root_path, "wavs", wav_file) | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def mozilla_de(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalizes Mozilla meta data files to TTS format""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "mozilla" | |
with open(txt_file, "r", encoding="ISO 8859-1") as ttf: | |
for line in ttf: | |
cols = line.strip().split("|") | |
wav_file = cols[0].strip() | |
text = cols[1].strip() | |
folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL" | |
wav_file = os.path.join(root_path, folder_name, wav_file) | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def mailabs(root_path, meta_files=None, ignored_speakers=None): | |
"""Normalizes M-AI-Labs meta data files to TTS format | |
Args: | |
root_path (str): root folder of the MAILAB language folder. | |
meta_files (str): list of meta files to be used in the training. If None, finds all the csv files | |
recursively. Defaults to None | |
""" | |
speaker_regex = re.compile(f"by_book{os.sep}(male|female){os.sep}(?P<speaker_name>[^{os.sep}]+){os.sep}") | |
if not meta_files: | |
csv_files = glob(root_path + f"{os.sep}**{os.sep}metadata.csv", recursive=True) | |
else: | |
csv_files = meta_files | |
# meta_files = [f.strip() for f in meta_files.split(",")] | |
items = [] | |
for csv_file in csv_files: | |
if os.path.isfile(csv_file): | |
txt_file = csv_file | |
else: | |
txt_file = os.path.join(root_path, csv_file) | |
folder = os.path.dirname(txt_file) | |
# determine speaker based on folder structure... | |
speaker_name_match = speaker_regex.search(txt_file) | |
if speaker_name_match is None: | |
continue | |
speaker_name = speaker_name_match.group("speaker_name") | |
# ignore speakers | |
if isinstance(ignored_speakers, list): | |
if speaker_name in ignored_speakers: | |
continue | |
print(" | > {}".format(csv_file)) | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
if not meta_files: | |
wav_file = os.path.join(folder, "wavs", cols[0] + ".wav") | |
else: | |
wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav") | |
if os.path.isfile(wav_file): | |
text = cols[1].strip() | |
items.append( | |
{"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path} | |
) | |
else: | |
# M-AI-Labs have some missing samples, so just print the warning | |
print("> File %s does not exist!" % (wav_file)) | |
return items | |
def ljspeech(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalizes the LJSpeech meta data file to TTS format | |
https://keithito.com/LJ-Speech-Dataset/""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "ljspeech" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") | |
text = cols[2] | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def ljspeech_test(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalizes the LJSpeech meta data file for TTS testing | |
https://keithito.com/LJ-Speech-Dataset/""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
speaker_id = 0 | |
for idx, line in enumerate(ttf): | |
# 2 samples per speaker to avoid eval split issues | |
if idx % 2 == 0: | |
speaker_id += 1 | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") | |
text = cols[2] | |
items.append( | |
{"text": text, "audio_file": wav_file, "speaker_name": f"ljspeech-{speaker_id}", "root_path": root_path} | |
) | |
return items | |
def thorsten(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalizes the thorsten meta data file to TTS format | |
https://github.com/thorstenMueller/deep-learning-german-tts/""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "thorsten" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") | |
text = cols[1] | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def sam_accenture(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalizes the sam-accenture meta data file to TTS format | |
https://github.com/Sam-Accenture-Non-Binary-Voice/non-binary-voice-files""" | |
xml_file = os.path.join(root_path, "voice_over_recordings", meta_file) | |
xml_root = ET.parse(xml_file).getroot() | |
items = [] | |
speaker_name = "sam_accenture" | |
for item in xml_root.findall("./fileid"): | |
text = item.text | |
wav_file = os.path.join(root_path, "vo_voice_quality_transformation", item.get("id") + ".wav") | |
if not os.path.exists(wav_file): | |
print(f" [!] {wav_file} in metafile does not exist. Skipping...") | |
continue | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def ruslan(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalizes the RUSLAN meta data file to TTS format | |
https://ruslan-corpus.github.io/""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "ruslan" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, "RUSLAN", cols[0] + ".wav") | |
text = cols[1] | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def css10(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalizes the CSS10 dataset file to TTS format""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "css10" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, cols[0]) | |
text = cols[1] | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def nancy(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Normalizes the Nancy meta data file to TTS format""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "nancy" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
utt_id = line.split()[1] | |
text = line[line.find('"') + 1 : line.rfind('"') - 1] | |
wav_file = os.path.join(root_path, "wavn", utt_id + ".wav") | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def common_voice(root_path, meta_file, ignored_speakers=None): | |
"""Normalize the common voice meta data file to TTS format.""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
if line.startswith("client_id"): | |
continue | |
cols = line.split("\t") | |
text = cols[2] | |
speaker_name = cols[0] | |
# ignore speakers | |
if isinstance(ignored_speakers, list): | |
if speaker_name in ignored_speakers: | |
continue | |
wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav")) | |
items.append( | |
{"text": text, "audio_file": wav_file, "speaker_name": "MCV_" + speaker_name, "root_path": root_path} | |
) | |
return items | |
def libri_tts(root_path, meta_files=None, ignored_speakers=None): | |
"""https://ai.google/tools/datasets/libri-tts/""" | |
items = [] | |
if not meta_files: | |
meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True) | |
else: | |
if isinstance(meta_files, str): | |
meta_files = [os.path.join(root_path, meta_files)] | |
for meta_file in meta_files: | |
_meta_file = os.path.basename(meta_file).split(".")[0] | |
with open(meta_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("\t") | |
file_name = cols[0] | |
speaker_name, chapter_id, *_ = cols[0].split("_") | |
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}") | |
wav_file = os.path.join(_root_path, file_name + ".wav") | |
text = cols[2] | |
# ignore speakers | |
if isinstance(ignored_speakers, list): | |
if speaker_name in ignored_speakers: | |
continue | |
items.append( | |
{ | |
"text": text, | |
"audio_file": wav_file, | |
"speaker_name": f"LTTS_{speaker_name}", | |
"root_path": root_path, | |
} | |
) | |
for item in items: | |
assert os.path.exists(item["audio_file"]), f" [!] wav files don't exist - {item['audio_file']}" | |
return items | |
def custom_turkish(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "turkish-female" | |
skipped_files = [] | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, "wavs", cols[0].strip() + ".wav") | |
if not os.path.exists(wav_file): | |
skipped_files.append(wav_file) | |
continue | |
text = cols[1].strip() | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
print(f" [!] {len(skipped_files)} files skipped. They don't exist...") | |
return items | |
# ToDo: add the dataset link when the dataset is released publicly | |
def brspeech(root_path, meta_file, ignored_speakers=None): | |
"""BRSpeech 3.0 beta""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
if line.startswith("wav_filename"): | |
continue | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, cols[0]) | |
text = cols[2] | |
speaker_id = cols[3] | |
# ignore speakers | |
if isinstance(ignored_speakers, list): | |
if speaker_id in ignored_speakers: | |
continue | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_id, "root_path": root_path}) | |
return items | |
def vctk(root_path, meta_files=None, wavs_path="wav48_silence_trimmed", mic="mic1", ignored_speakers=None): | |
"""VCTK dataset v0.92. | |
URL: | |
https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip | |
This dataset has 2 recordings per speaker that are annotated with ```mic1``` and ```mic2```. | |
It is believed that (😄 ) ```mic1``` files are the same as the previous version of the dataset. | |
mic1: | |
Audio recorded using an omni-directional microphone (DPA 4035). | |
Contains very low frequency noises. | |
This is the same audio released in previous versions of VCTK: | |
https://doi.org/10.7488/ds/1994 | |
mic2: | |
Audio recorded using a small diaphragm condenser microphone with | |
very wide bandwidth (Sennheiser MKH 800). | |
Two speakers, p280 and p315 had technical issues of the audio | |
recordings using MKH 800. | |
""" | |
file_ext = "flac" | |
items = [] | |
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) | |
for meta_file in meta_files: | |
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) | |
file_id = txt_file.split(".")[0] | |
# ignore speakers | |
if isinstance(ignored_speakers, list): | |
if speaker_id in ignored_speakers: | |
continue | |
with open(meta_file, "r", encoding="utf-8") as file_text: | |
text = file_text.readlines()[0] | |
# p280 has no mic2 recordings | |
if speaker_id == "p280": | |
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_mic1.{file_ext}") | |
else: | |
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_{mic}.{file_ext}") | |
if os.path.exists(wav_file): | |
items.append( | |
{"text": text, "audio_file": wav_file, "speaker_name": "VCTK_" + speaker_id, "root_path": root_path} | |
) | |
else: | |
print(f" [!] wav files don't exist - {wav_file}") | |
return items | |
def vctk_old(root_path, meta_files=None, wavs_path="wav48", ignored_speakers=None): | |
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz""" | |
items = [] | |
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) | |
for meta_file in meta_files: | |
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) | |
file_id = txt_file.split(".")[0] | |
# ignore speakers | |
if isinstance(ignored_speakers, list): | |
if speaker_id in ignored_speakers: | |
continue | |
with open(meta_file, "r", encoding="utf-8") as file_text: | |
text = file_text.readlines()[0] | |
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav") | |
items.append( | |
{"text": text, "audio_file": wav_file, "speaker_name": "VCTK_old_" + speaker_id, "root_path": root_path} | |
) | |
return items | |
def synpaflex(root_path, metafiles=None, **kwargs): # pylint: disable=unused-argument | |
items = [] | |
speaker_name = "synpaflex" | |
root_path = os.path.join(root_path, "") | |
wav_files = glob(f"{root_path}**/*.wav", recursive=True) | |
for wav_file in wav_files: | |
if os.sep + "wav" + os.sep in wav_file: | |
txt_file = wav_file.replace("wav", "txt") | |
else: | |
txt_file = os.path.join( | |
os.path.dirname(wav_file), "txt", os.path.basename(wav_file).replace(".wav", ".txt") | |
) | |
if os.path.exists(txt_file) and os.path.exists(wav_file): | |
with open(txt_file, "r", encoding="utf-8") as file_text: | |
text = file_text.readlines()[0] | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def open_bible(root_path, meta_files="train", ignore_digits_sentences=True, ignored_speakers=None): | |
"""ToDo: Refer the paper when available""" | |
items = [] | |
split_dir = meta_files | |
meta_files = glob(f"{os.path.join(root_path, split_dir)}/**/*.txt", recursive=True) | |
for meta_file in meta_files: | |
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) | |
file_id = txt_file.split(".")[0] | |
# ignore speakers | |
if isinstance(ignored_speakers, list): | |
if speaker_id in ignored_speakers: | |
continue | |
with open(meta_file, "r", encoding="utf-8") as file_text: | |
text = file_text.readline().replace("\n", "") | |
# ignore sentences that contains digits | |
if ignore_digits_sentences and any(map(str.isdigit, text)): | |
continue | |
wav_file = os.path.join(root_path, split_dir, speaker_id, file_id + ".flac") | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": "OB_" + speaker_id, "root_path": root_path}) | |
return items | |
def mls(root_path, meta_files=None, ignored_speakers=None): | |
"""http://www.openslr.org/94/""" | |
items = [] | |
with open(os.path.join(root_path, meta_files), "r", encoding="utf-8") as meta: | |
for line in meta: | |
file, text = line.split("\t") | |
text = text[:-1] | |
speaker, book, *_ = file.split("_") | |
wav_file = os.path.join(root_path, os.path.dirname(meta_files), "audio", speaker, book, file + ".wav") | |
# ignore speakers | |
if isinstance(ignored_speakers, list): | |
if speaker in ignored_speakers: | |
continue | |
items.append( | |
{"text": text, "audio_file": wav_file, "speaker_name": "MLS_" + speaker, "root_path": root_path} | |
) | |
return items | |
# ======================================== VOX CELEB =========================================== | |
def voxceleb2(root_path, meta_file=None, **kwargs): # pylint: disable=unused-argument | |
""" | |
:param meta_file Used only for consistency with load_tts_samples api | |
""" | |
return _voxcel_x(root_path, meta_file, voxcel_idx="2") | |
def voxceleb1(root_path, meta_file=None, **kwargs): # pylint: disable=unused-argument | |
""" | |
:param meta_file Used only for consistency with load_tts_samples api | |
""" | |
return _voxcel_x(root_path, meta_file, voxcel_idx="1") | |
def _voxcel_x(root_path, meta_file, voxcel_idx): | |
assert voxcel_idx in ["1", "2"] | |
expected_count = 148_000 if voxcel_idx == "1" else 1_000_000 | |
voxceleb_path = Path(root_path) | |
cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv" | |
cache_to.parent.mkdir(exist_ok=True) | |
# if not exists meta file, crawl recursively for 'wav' files | |
if meta_file is not None: | |
with open(str(meta_file), "r", encoding="utf-8") as f: | |
return [x.strip().split("|") for x in f.readlines()] | |
elif not cache_to.exists(): | |
cnt = 0 | |
meta_data = [] | |
wav_files = voxceleb_path.rglob("**/*.wav") | |
for path in tqdm( | |
wav_files, | |
desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.", | |
total=expected_count, | |
): | |
speaker_id = str(Path(path).parent.parent.stem) | |
assert speaker_id.startswith("id") | |
text = None # VoxCel does not provide transciptions, and they are not needed for training the SE | |
meta_data.append(f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n") | |
cnt += 1 | |
with open(str(cache_to), "w", encoding="utf-8") as f: | |
f.write("".join(meta_data)) | |
if cnt < expected_count: | |
raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}") | |
with open(str(cache_to), "r", encoding="utf-8") as f: | |
return [x.strip().split("|") for x in f.readlines()] | |
def emotion(root_path, meta_file, ignored_speakers=None): | |
"""Generic emotion dataset""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
if line.startswith("file_path"): | |
continue | |
cols = line.split(",") | |
wav_file = os.path.join(root_path, cols[0]) | |
speaker_id = cols[1] | |
emotion_id = cols[2].replace("\n", "") | |
# ignore speakers | |
if isinstance(ignored_speakers, list): | |
if speaker_id in ignored_speakers: | |
continue | |
items.append( | |
{"audio_file": wav_file, "speaker_name": speaker_id, "emotion_name": emotion_id, "root_path": root_path} | |
) | |
return items | |
def baker(root_path: str, meta_file: str, **kwargs) -> List[List[str]]: # pylint: disable=unused-argument | |
"""Normalizes the Baker meta data file to TTS format | |
Args: | |
root_path (str): path to the baker dataset | |
meta_file (str): name of the meta dataset containing names of wav to select and the transcript of the sentence | |
Returns: | |
List[List[str]]: List of (text, wav_path, speaker_name) associated with each sentences | |
""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "baker" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
wav_name, text = line.rstrip("\n").split("|") | |
wav_path = os.path.join(root_path, "clips_22", wav_name) | |
items.append({"text": text, "audio_file": wav_path, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def kokoro(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Japanese single-speaker dataset from https://github.com/kaiidams/Kokoro-Speech-Dataset""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "kokoro" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") | |
text = cols[2].replace(" ", "") | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def kss(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
"""Korean single-speaker dataset from https://www.kaggle.com/datasets/bryanpark/korean-single-speaker-speech-dataset""" | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "kss" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, cols[0]) | |
text = cols[2] # cols[1] => 6월, cols[2] => 유월 | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |
def bel_tts_formatter(root_path, meta_file, **kwargs): # pylint: disable=unused-argument | |
txt_file = os.path.join(root_path, meta_file) | |
items = [] | |
speaker_name = "bel_tts" | |
with open(txt_file, "r", encoding="utf-8") as ttf: | |
for line in ttf: | |
cols = line.split("|") | |
wav_file = os.path.join(root_path, cols[0]) | |
text = cols[1] | |
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) | |
return items | |