Spaces:
Runtime error
Runtime error
import os | |
from dataclasses import dataclass, field | |
from coqpit import Coqpit | |
from trainer import TrainerArgs, get_last_checkpoint | |
from trainer.logging import logger_factory | |
from trainer.logging.console_logger import ConsoleLogger | |
from TTS.config import load_config, register_config | |
from TTS.tts.utils.text.characters import parse_symbols | |
from TTS.utils.generic_utils import get_experiment_folder_path, get_git_branch | |
from TTS.utils.io import copy_model_files | |
class TrainArgs(TrainerArgs): | |
config_path: str = field(default=None, metadata={"help": "Path to the config file."}) | |
def getarguments(): | |
train_config = TrainArgs() | |
parser = train_config.init_argparse(arg_prefix="") | |
return parser | |
def process_args(args, config=None): | |
"""Process parsed comand line arguments and initialize the config if not provided. | |
Args: | |
args (argparse.Namespace or dict like): Parsed input arguments. | |
config (Coqpit): Model config. If none, it is generated from `args`. Defaults to None. | |
Returns: | |
c (TTS.utils.io.AttrDict): Config paramaters. | |
out_path (str): Path to save models and logging. | |
audio_path (str): Path to save generated test audios. | |
c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does | |
logging to the console. | |
dashboard_logger (WandbLogger or TensorboardLogger): Class that does the dashboard Logging | |
TODO: | |
- Interactive config definition. | |
""" | |
if isinstance(args, tuple): | |
args, coqpit_overrides = args | |
if args.continue_path: | |
# continue a previous training from its output folder | |
experiment_path = args.continue_path | |
args.config_path = os.path.join(args.continue_path, "config.json") | |
args.restore_path, best_model = get_last_checkpoint(args.continue_path) | |
if not args.best_path: | |
args.best_path = best_model | |
# init config if not already defined | |
if config is None: | |
if args.config_path: | |
# init from a file | |
config = load_config(args.config_path) | |
else: | |
# init from console args | |
from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel | |
config_base = BaseTrainingConfig() | |
config_base.parse_known_args(coqpit_overrides) | |
config = register_config(config_base.model)() | |
# override values from command-line args | |
config.parse_known_args(coqpit_overrides, relaxed_parser=True) | |
experiment_path = args.continue_path | |
if not experiment_path: | |
experiment_path = get_experiment_folder_path(config.output_path, config.run_name) | |
audio_path = os.path.join(experiment_path, "test_audios") | |
config.output_log_path = experiment_path | |
# setup rank 0 process in distributed training | |
dashboard_logger = None | |
if args.rank == 0: | |
new_fields = {} | |
if args.restore_path: | |
new_fields["restore_path"] = args.restore_path | |
new_fields["github_branch"] = get_git_branch() | |
# if model characters are not set in the config file | |
# save the default set to the config file for future | |
# compatibility. | |
if config.has("characters") and config.characters is None: | |
used_characters = parse_symbols() | |
new_fields["characters"] = used_characters | |
copy_model_files(config, experiment_path, new_fields) | |
dashboard_logger = logger_factory(config, experiment_path) | |
c_logger = ConsoleLogger() | |
return config, experiment_path, audio_path, c_logger, dashboard_logger | |
def init_arguments(): | |
train_config = TrainArgs() | |
parser = train_config.init_argparse(arg_prefix="") | |
return parser | |
def init_training(config: Coqpit = None): | |
"""Initialization of a training run.""" | |
parser = init_arguments() | |
args = parser.parse_known_args() | |
config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = process_args(args, config) | |
return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger | |