added feature_eng
Browse files- feature_engineering.py +101 -0
feature_engineering.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
################ Dicts with encodings ################
|
3 |
+
cleanup_catergories = {"sex": {"female": 1, "male": 0}, "embarked": {"S": 0, "C": 1, "Q": 2}, "Cabin": {"N": 0, "C": 1, "E": 2, "G": 3, "D":4, "A": 5, "B": 6, "F": 7, "T": 8}}
|
4 |
+
|
5 |
+
sex_dict = {"female": 1, "male": 0}
|
6 |
+
embarked_dict = {"S": 0, "C": 1, "Q": 2}
|
7 |
+
|
8 |
+
# Reversed
|
9 |
+
"""
|
10 |
+
title_dict = {
|
11 |
+
0: ["Mr"],
|
12 |
+
1: ["Miss"],
|
13 |
+
2: ["Mrs"],
|
14 |
+
3: ["Master"],
|
15 |
+
# Rare titles, not worth individual categorys
|
16 |
+
4: [
|
17 |
+
"Dr",
|
18 |
+
"Rev",
|
19 |
+
"Mlle",
|
20 |
+
"Major",
|
21 |
+
"Col",
|
22 |
+
"Countess",
|
23 |
+
"Capt",
|
24 |
+
"Ms",
|
25 |
+
"Sir",
|
26 |
+
"Lady",
|
27 |
+
"Nme",
|
28 |
+
"Don",
|
29 |
+
"Jonkheer",
|
30 |
+
],
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
#####################################################
|
34 |
+
|
35 |
+
def feat_eng(df):
|
36 |
+
"""
|
37 |
+
Main function containg the feature engineering part
|
38 |
+
of the pipeline.
|
39 |
+
"""
|
40 |
+
import pandas as pd
|
41 |
+
import numpy as np
|
42 |
+
import hopsworks
|
43 |
+
|
44 |
+
# Load the data_frame
|
45 |
+
df = pd.read_csv(
|
46 |
+
"https://raw.githubusercontent.com/ID2223KTH/id2223kth.github.io/master/assignments/lab1/titanic.csv"
|
47 |
+
)
|
48 |
+
|
49 |
+
# Drop features and NaNs
|
50 |
+
df.drop(["Ticket", "Fare"], axis=1, inplace=True)
|
51 |
+
df = df[df["Embarked"].notna()]
|
52 |
+
|
53 |
+
# Feature engineering
|
54 |
+
# Creat a title feature
|
55 |
+
if "Name" in df.columns:
|
56 |
+
df["Title"] = df.Name.str.extract("([A-Za-z]+)\\.")
|
57 |
+
df.drop("Name", axis=1, inplace=True)
|
58 |
+
|
59 |
+
# Interpolate missing ages
|
60 |
+
for title in df["Title"].unique():
|
61 |
+
# This sould be optimized
|
62 |
+
mask = (df["Title"] == title) & df["Age"].isna()
|
63 |
+
|
64 |
+
# Get sutible candidates for age sampling
|
65 |
+
candidates = df.loc[(df["Title"] == title) & df["Age"].notna()]
|
66 |
+
|
67 |
+
g = candidates.groupby("Age", dropna=True)["Age"].count()
|
68 |
+
g = g.apply(lambda x: x / g.sum())
|
69 |
+
|
70 |
+
weights = g.to_numpy()
|
71 |
+
ages = g.index
|
72 |
+
|
73 |
+
df.update(df["Age"][mask].apply(lambda x: np.random.choice(ages, p=weights)))
|
74 |
+
|
75 |
+
# Cast age to int
|
76 |
+
df["Age"] = df["Age"].astype("int")
|
77 |
+
# Bin ages
|
78 |
+
df['Age'] = pd.cut(df['Age'],[0,8,15,30,65,150])
|
79 |
+
|
80 |
+
# Bin fare
|
81 |
+
df['Fare'] = pd.cut(df['Fare'],[0,200,400,600,1000])
|
82 |
+
|
83 |
+
|
84 |
+
# Bin SibSp
|
85 |
+
pd.cut(df['SibSp'], [0,1,2,7], right=False)
|
86 |
+
|
87 |
+
# Cabin into categories based on first letter(deck of boat)
|
88 |
+
df["Cabin"] = df["Cabin"].str.slice(0,1)
|
89 |
+
|
90 |
+
# Make a separate category of all te NANs
|
91 |
+
df["Cabin"] = df["Cabin"].fillna("N")
|
92 |
+
|
93 |
+
# Fixes for hopsworks...
|
94 |
+
df.columns = df.columns.str.lower()
|
95 |
+
|
96 |
+
# Final encoding
|
97 |
+
df = df.replace(cleanup_catergories)
|
98 |
+
|
99 |
+
return df
|
100 |
+
|
101 |
+
|