Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from sentence_transformers import SentenceTransformer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import numpy as np | |
| # Carga el modelo | |
| model = SentenceTransformer('Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt') | |
| # Funci贸n para obtener embeddings del modelo | |
| def get_embeddings(sentences): | |
| embeddings = model.encode(sentences, show_progress_bar=False) | |
| return np.array(embeddings) | |
| # Funci贸n para comparar las sentencias | |
| def compare(source_sentence, compare_sentence): | |
| # Calcula la similitud | |
| embeddings = get_embeddings([source_sentence, compare_sentence]) | |
| similarity = float(cosine_similarity(embeddings[0].reshape(1, -1), embeddings[1].reshape(1, -1))[0][0]) # Convert the numpy.float32 to Python float | |
| return similarity | |
| # Define las interfaces de entrada y salida de Gradio | |
| iface = gr.Interface( | |
| fn=compare, | |
| inputs=["text", "text"], | |
| outputs="number", | |
| live=True | |
| ) | |
| # Inicia la interfaz de Gradio | |
| iface.launch() | |