Similary / app.py
antagonico's picture
Update app.py
a8efbc5
import gradio as gr
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# Carga el modelo
model = SentenceTransformer('Maite89/Roberta_finetuning_semantic_similarity_stsb_multi_mt')
# Funci贸n para obtener embeddings del modelo
def get_embeddings(sentences):
embeddings = model.encode(sentences, show_progress_bar=False)
return np.array(embeddings)
# Funci贸n para comparar las sentencias
def compare(source_sentence, compare_sentence):
# Calcula la similitud
embeddings = get_embeddings([source_sentence, compare_sentence])
similarity = float(cosine_similarity(embeddings[0].reshape(1, -1), embeddings[1].reshape(1, -1))[0][0]) # Convert the numpy.float32 to Python float
return similarity
# Define las interfaces de entrada y salida de Gradio
iface = gr.Interface(
fn=compare,
inputs=["text", "text"],
outputs="number",
live=True
)
# Inicia la interfaz de Gradio
iface.launch()