Spaces:
Sleeping
Sleeping
app
Browse files- .gitignore +5 -0
- Dockerfile +31 -0
- app.py +156 -0
- main.py +592 -0
- requirements.txt +15 -0
- ruff.toml +3 -0
- supervisord.conf +20 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
*.json
|
3 |
+
data
|
4 |
+
.ipynb_checkpoints
|
5 |
+
__pycache__
|
Dockerfile
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV HOME=/home/user \
|
6 |
+
PATH=/home/user/.local/bin:$PATH
|
7 |
+
|
8 |
+
# Set the working directory
|
9 |
+
WORKDIR $HOME/app
|
10 |
+
|
11 |
+
COPY requirements.txt .
|
12 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
13 |
+
RUN git config --global credential.helper store
|
14 |
+
|
15 |
+
COPY . .
|
16 |
+
COPY supervisord.conf .
|
17 |
+
|
18 |
+
# Set permissions on the log file
|
19 |
+
USER root
|
20 |
+
RUN touch $HOME/app/mylog.log $HOME/app/supervisord.log && chmod a+rwx $HOME/app/mylog.log $HOME/app/supervisord.log
|
21 |
+
|
22 |
+
RUN mkdir -p /tmp/cache/
|
23 |
+
RUN mkdir -p /.cache
|
24 |
+
RUN chmod a+rwx -R /tmp/cache/
|
25 |
+
RUN chmod a+rwx -R /.cache
|
26 |
+
ENV HF_HUB_CACHE=HF_HOME
|
27 |
+
|
28 |
+
ENV PYTHONUNBUFFERED=1 PORT=7860
|
29 |
+
|
30 |
+
# Run supervisord
|
31 |
+
CMD ["supervisord", "-c", "supervisord.conf"]
|
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
from collections import defaultdict
|
4 |
+
from datetime import date, datetime, timedelta
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
import dotenv
|
8 |
+
from datasets import load_dataset
|
9 |
+
from dateutil.parser import parse
|
10 |
+
from dateutil.tz import tzutc
|
11 |
+
from fasthtml.common import *
|
12 |
+
from huggingface_hub import login, whoami
|
13 |
+
|
14 |
+
dotenv.load_dotenv()
|
15 |
+
|
16 |
+
style = Style("""
|
17 |
+
.grid { margin-bottom: 1rem; }
|
18 |
+
.card { display: flex; flex-direction: column; }
|
19 |
+
.card img { margin-bottom: 0.5rem; }
|
20 |
+
.card h5 { margin: 0; font-size: 0.9rem; line-height: 1.2; }
|
21 |
+
.card a { color: inherit; text-decoration: none; }
|
22 |
+
.card a:hover { text-decoration: underline; }
|
23 |
+
""")
|
24 |
+
|
25 |
+
app, rt = fast_app(html_style=(style,))
|
26 |
+
|
27 |
+
login(token=os.environ.get("HF_TOKEN"))
|
28 |
+
|
29 |
+
hf_user = whoami(os.environ.get("HF_TOKEN"))["name"]
|
30 |
+
HF_REPO_ID = f"{hf_user}/zotero-articles"
|
31 |
+
|
32 |
+
abstract_ds = load_dataset(HF_REPO_ID, "abstracts", split="train")
|
33 |
+
article_ds = load_dataset(HF_REPO_ID, "articles", split="train")
|
34 |
+
|
35 |
+
image_ds = load_dataset(HF_REPO_ID, "images", split="train")
|
36 |
+
image_ds = image_ds.filter(lambda x: x["page_number"] == 1)
|
37 |
+
|
38 |
+
|
39 |
+
def parse_date(date_string):
|
40 |
+
try:
|
41 |
+
return parse(date_string).astimezone(tzutc()).date()
|
42 |
+
except ValueError:
|
43 |
+
return date.today()
|
44 |
+
|
45 |
+
|
46 |
+
def get_week_start(date_obj):
|
47 |
+
return date_obj - timedelta(days=date_obj.weekday())
|
48 |
+
|
49 |
+
|
50 |
+
week2articles = defaultdict(list)
|
51 |
+
for article in article_ds:
|
52 |
+
date_added = parse_date(article["date_added"])
|
53 |
+
week_start = get_week_start(date_added)
|
54 |
+
week2articles[week_start].append(article["arxiv_id"])
|
55 |
+
|
56 |
+
weeks = sorted(week2articles.keys(), reverse=True)
|
57 |
+
|
58 |
+
|
59 |
+
def get_article_details(arxiv_id):
|
60 |
+
article = article_ds.filter(lambda x: x["arxiv_id"] == arxiv_id)[0]
|
61 |
+
abstract = abstract_ds.filter(lambda x: x["arxiv_id"] == arxiv_id)
|
62 |
+
image = image_ds.filter(lambda x: x["arxiv_id"] == arxiv_id)
|
63 |
+
return article, abstract, image
|
64 |
+
|
65 |
+
|
66 |
+
def generate_week_content(current_week):
|
67 |
+
week_index = weeks.index(current_week)
|
68 |
+
prev_week = weeks[week_index + 1] if week_index < len(weeks) - 1 else None
|
69 |
+
next_week = weeks[week_index - 1] if week_index > 0 else None
|
70 |
+
|
71 |
+
nav_buttons = Group(
|
72 |
+
Button(
|
73 |
+
"← Previous Week",
|
74 |
+
hx_get=f"/week/{prev_week}" if prev_week else "#",
|
75 |
+
hx_target="#content",
|
76 |
+
hx_swap="innerHTML",
|
77 |
+
disabled=not prev_week,
|
78 |
+
),
|
79 |
+
Button(
|
80 |
+
"Next Week →",
|
81 |
+
hx_get=f"/week/{next_week}" if next_week else "#",
|
82 |
+
hx_target="#content",
|
83 |
+
hx_swap="innerHTML",
|
84 |
+
disabled=not next_week,
|
85 |
+
),
|
86 |
+
)
|
87 |
+
|
88 |
+
articles = week2articles[current_week]
|
89 |
+
article_cards = []
|
90 |
+
for arxiv_id in articles:
|
91 |
+
article, abstract, image = get_article_details(arxiv_id)
|
92 |
+
article_title = (
|
93 |
+
article["contents"][0].get("paper_title", "article")
|
94 |
+
if article["contents"]
|
95 |
+
else "article"
|
96 |
+
)
|
97 |
+
|
98 |
+
card_content = [
|
99 |
+
H5(
|
100 |
+
A(
|
101 |
+
article_title,
|
102 |
+
href=f"https://arxiv.org/abs/{arxiv_id}",
|
103 |
+
target="_blank",
|
104 |
+
)
|
105 |
+
)
|
106 |
+
]
|
107 |
+
|
108 |
+
if image:
|
109 |
+
pil_image = image[0]["image"]
|
110 |
+
img_byte_arr = BytesIO()
|
111 |
+
pil_image.save(img_byte_arr, format="JPEG")
|
112 |
+
img_byte_arr = img_byte_arr.getvalue()
|
113 |
+
image_url = f"data:image/jpeg;base64,{base64.b64encode(img_byte_arr).decode('utf-8')}"
|
114 |
+
card_content.insert(
|
115 |
+
0,
|
116 |
+
Img(
|
117 |
+
src=image_url,
|
118 |
+
alt="Article image",
|
119 |
+
style="max-width: 100%; height: auto; margin-bottom: 15px;",
|
120 |
+
),
|
121 |
+
)
|
122 |
+
|
123 |
+
article_cards.append(Card(*card_content, cls="mb-4"))
|
124 |
+
|
125 |
+
grid = Grid(
|
126 |
+
*article_cards,
|
127 |
+
style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 1rem;",
|
128 |
+
)
|
129 |
+
|
130 |
+
week_end = current_week + timedelta(days=6)
|
131 |
+
return Div(
|
132 |
+
nav_buttons,
|
133 |
+
H3(
|
134 |
+
f"Week of {current_week.strftime('%B %d')} - {week_end.strftime('%B %d, %Y')} ({len(articles)} articles)"
|
135 |
+
),
|
136 |
+
grid,
|
137 |
+
nav_buttons,
|
138 |
+
id="content",
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
@rt("/")
|
143 |
+
def get():
|
144 |
+
return Titled("AnswerAI Zotero Weekly", generate_week_content(weeks[0]))
|
145 |
+
|
146 |
+
|
147 |
+
@rt("/week/{date}")
|
148 |
+
def get(date: str):
|
149 |
+
try:
|
150 |
+
current_week = datetime.strptime(date, "%Y-%m-%d").date()
|
151 |
+
return generate_week_content(current_week)
|
152 |
+
except Exception as e:
|
153 |
+
return Div(f"Error displaying articles: {str(e)}")
|
154 |
+
|
155 |
+
|
156 |
+
serve()
|
main.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import time
|
4 |
+
|
5 |
+
import dotenv
|
6 |
+
import fitz # PyMuPDF
|
7 |
+
import pandas as pd
|
8 |
+
import requests
|
9 |
+
import schedule
|
10 |
+
import srsly
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
from datasets import Dataset, Image, load_dataset
|
13 |
+
from huggingface_hub import create_repo, login, whoami
|
14 |
+
from PIL import Image as PILImage
|
15 |
+
from retry import retry
|
16 |
+
from tqdm.auto import tqdm
|
17 |
+
|
18 |
+
dotenv.load_dotenv()
|
19 |
+
login(token=os.environ.get("HF_TOKEN"))
|
20 |
+
|
21 |
+
hf_user = whoami(os.environ.get("HF_TOKEN"))["name"]
|
22 |
+
HF_REPO_ID = f"{hf_user}/zotero-articles"
|
23 |
+
|
24 |
+
|
25 |
+
########################################################
|
26 |
+
### GET ZOTERO ITEMS
|
27 |
+
########################################################
|
28 |
+
|
29 |
+
|
30 |
+
@retry(tries=3, delay=8)
|
31 |
+
def _fetch_one_zotero_batch(url, headers, params):
|
32 |
+
"""
|
33 |
+
Fetch articles from Zotero API
|
34 |
+
"""
|
35 |
+
response = requests.get(url, headers=headers, params=params)
|
36 |
+
response.raise_for_status()
|
37 |
+
return response.json()
|
38 |
+
|
39 |
+
|
40 |
+
def get_zotero_items(debug=False):
|
41 |
+
"""
|
42 |
+
fetch items from zotero library
|
43 |
+
"""
|
44 |
+
|
45 |
+
GROUP_ID = os.getenv("GROUP_ID")
|
46 |
+
API_KEY = os.getenv("API_KEY")
|
47 |
+
BASE_URL = f"https://api.zotero.org/groups/{GROUP_ID}/items"
|
48 |
+
LIMIT = 100
|
49 |
+
|
50 |
+
headers = {"Zotero-API-Key": API_KEY, "Content-Type": "application/json"}
|
51 |
+
|
52 |
+
items = []
|
53 |
+
start = 0
|
54 |
+
|
55 |
+
i = 1
|
56 |
+
while True:
|
57 |
+
i += 1
|
58 |
+
params = {"limit": LIMIT, "start": start}
|
59 |
+
page_items = _fetch_one_zotero_batch(BASE_URL, headers, params)
|
60 |
+
|
61 |
+
if not page_items:
|
62 |
+
break
|
63 |
+
|
64 |
+
items.extend(page_items)
|
65 |
+
start += LIMIT
|
66 |
+
print(f"# items fetched {len(items)}")
|
67 |
+
|
68 |
+
if debug:
|
69 |
+
if len(items) > 200:
|
70 |
+
break
|
71 |
+
|
72 |
+
return items
|
73 |
+
|
74 |
+
|
75 |
+
########################################################
|
76 |
+
### EXTRACT ARXIV LINKS AND PDFs
|
77 |
+
########################################################
|
78 |
+
|
79 |
+
|
80 |
+
def get_arxiv_items(items):
|
81 |
+
visited = set()
|
82 |
+
|
83 |
+
arxiv_items = []
|
84 |
+
arxiv_pattern = re.compile(r"arxiv.org/abs/(\d+\.\d+)")
|
85 |
+
|
86 |
+
for item in items:
|
87 |
+
data = item.get("data", {})
|
88 |
+
attachments = item.get("links", {}).get("attachment", {})
|
89 |
+
|
90 |
+
arxiv_url = None
|
91 |
+
pdf_url = None
|
92 |
+
|
93 |
+
if "url" in data and "arxiv.org" in data["url"]:
|
94 |
+
arxiv_match = arxiv_pattern.search(data["url"])
|
95 |
+
if arxiv_match:
|
96 |
+
arxiv_url = data["url"]
|
97 |
+
|
98 |
+
if attachments:
|
99 |
+
pdf_url = attachments["href"]
|
100 |
+
|
101 |
+
if arxiv_url:
|
102 |
+
arxiv_id = arxiv_url.split("/")[-1]
|
103 |
+
if arxiv_id in visited:
|
104 |
+
continue
|
105 |
+
|
106 |
+
arxiv_items.append(
|
107 |
+
{
|
108 |
+
"arxiv_id": arxiv_id,
|
109 |
+
"arxiv_url": arxiv_url,
|
110 |
+
"pdf_url": pdf_url,
|
111 |
+
"added_by": item["meta"]["createdByUser"]["username"],
|
112 |
+
"date_added": data.get("dateAdded", ""),
|
113 |
+
}
|
114 |
+
)
|
115 |
+
|
116 |
+
visited.add(arxiv_id)
|
117 |
+
|
118 |
+
return arxiv_items
|
119 |
+
|
120 |
+
|
121 |
+
@retry(tries=3, delay=15, backoff=2)
|
122 |
+
def fetch_arxiv_html(arxiv_id):
|
123 |
+
url = f"https://ar5iv.labs.arxiv.org/html/{arxiv_id.split('v')[0]}"
|
124 |
+
response = requests.get(url)
|
125 |
+
return response.text if response.status_code == 200 else None
|
126 |
+
|
127 |
+
|
128 |
+
def fetch_arxiv_htmls(arxiv_items):
|
129 |
+
for item in tqdm(arxiv_items):
|
130 |
+
html = fetch_arxiv_html(item["arxiv_id"])
|
131 |
+
if html:
|
132 |
+
item["raw_html"] = html
|
133 |
+
else:
|
134 |
+
print(f"failed to fetch html for {item['arxiv_id']}")
|
135 |
+
item["raw_html"] = "Error"
|
136 |
+
|
137 |
+
return arxiv_items
|
138 |
+
|
139 |
+
|
140 |
+
########################################################
|
141 |
+
### PARSE CONTENT FROM ARXIV HTML #
|
142 |
+
########################################################
|
143 |
+
|
144 |
+
|
145 |
+
def parse_html_content(html):
|
146 |
+
"""
|
147 |
+
Parse content from arxiv html
|
148 |
+
"""
|
149 |
+
arxiv_id_match = re.search(r"\[(\d+\.\d+(v\d+)?)\]", html)
|
150 |
+
arxiv_id = arxiv_id_match.group(1) if arxiv_id_match else None
|
151 |
+
soup = BeautifulSoup(html, "html.parser")
|
152 |
+
result = []
|
153 |
+
|
154 |
+
# Extract paper title
|
155 |
+
try:
|
156 |
+
paper_title = soup.find("h1", class_="ltx_title ltx_title_document").get_text(
|
157 |
+
strip=True
|
158 |
+
)
|
159 |
+
except Exception:
|
160 |
+
paper_title = soup.find("title").get_text(strip=True)
|
161 |
+
paper_title = re.sub(r"^\[\d+\.\d+(v\d+)?\]\s*", "", paper_title)
|
162 |
+
|
163 |
+
for math in soup.find_all("math"):
|
164 |
+
math.decompose()
|
165 |
+
for cite in soup.find_all("cite"):
|
166 |
+
cite.decompose()
|
167 |
+
|
168 |
+
# Extract abstract
|
169 |
+
abstract = soup.find("div", class_="ltx_abstract")
|
170 |
+
if abstract:
|
171 |
+
result.append(
|
172 |
+
{
|
173 |
+
"content": " ".join(
|
174 |
+
p.get_text(strip=True) for p in abstract.find_all("p")
|
175 |
+
).replace(")", ") "),
|
176 |
+
"title": "Abstract",
|
177 |
+
"paper_title": paper_title,
|
178 |
+
"content_type": "abstract",
|
179 |
+
}
|
180 |
+
)
|
181 |
+
# Extract sections
|
182 |
+
sections = soup.find_all("section", class_="ltx_section")
|
183 |
+
for index, section in enumerate(sections):
|
184 |
+
section_title = section.find("h2", class_="ltx_title ltx_title_section")
|
185 |
+
section_title = (
|
186 |
+
section_title.get_text(strip=True)
|
187 |
+
if section_title
|
188 |
+
else f"Section {index + 1}"
|
189 |
+
)
|
190 |
+
section_content = section.get_text(strip=True).replace(")", ") ")
|
191 |
+
|
192 |
+
content_type = "body"
|
193 |
+
if index == 0:
|
194 |
+
content_type = "introduction"
|
195 |
+
elif index == len(sections) - 1:
|
196 |
+
content_type = "conclusion"
|
197 |
+
|
198 |
+
result.append(
|
199 |
+
{
|
200 |
+
"content": section_content,
|
201 |
+
"title": section_title,
|
202 |
+
"paper_title": paper_title,
|
203 |
+
"content_type": content_type,
|
204 |
+
}
|
205 |
+
)
|
206 |
+
|
207 |
+
for c in result:
|
208 |
+
c["arxiv_id"] = arxiv_id
|
209 |
+
|
210 |
+
return result
|
211 |
+
|
212 |
+
|
213 |
+
########################################################
|
214 |
+
### GET TEXTS FROM PDF & PARSE
|
215 |
+
########################################################
|
216 |
+
|
217 |
+
|
218 |
+
def get_pdf_text(arxiv_id):
|
219 |
+
url = "http://147.189.194.113:80/extract" # fix: currently down
|
220 |
+
|
221 |
+
try:
|
222 |
+
response = requests.get(url, params={"arxiv_id": arxiv_id})
|
223 |
+
response = response.json()
|
224 |
+
if "text" in response:
|
225 |
+
return response["text"]
|
226 |
+
return None
|
227 |
+
except Exception as e:
|
228 |
+
print(e)
|
229 |
+
return None
|
230 |
+
|
231 |
+
|
232 |
+
def get_content_type(section_type, section_count):
|
233 |
+
"""Determine the content type based on the section type and count"""
|
234 |
+
if section_type == "abstract":
|
235 |
+
return "abstract"
|
236 |
+
elif section_type == "introduction" or section_count == 1:
|
237 |
+
return "introduction"
|
238 |
+
elif section_type == "conclusion" or section_type == "references":
|
239 |
+
return section_type
|
240 |
+
else:
|
241 |
+
return "body"
|
242 |
+
|
243 |
+
|
244 |
+
def get_section_type(title):
|
245 |
+
"""Determine the section type based on the title"""
|
246 |
+
title_lower = title.lower()
|
247 |
+
if "abstract" in title_lower:
|
248 |
+
return "abstract"
|
249 |
+
elif "introduction" in title_lower:
|
250 |
+
return "introduction"
|
251 |
+
elif "conclusion" in title_lower:
|
252 |
+
return "conclusion"
|
253 |
+
elif "reference" in title_lower:
|
254 |
+
return "references"
|
255 |
+
else:
|
256 |
+
return "body"
|
257 |
+
|
258 |
+
|
259 |
+
def parse_markdown_content(md_content, arxiv_id):
|
260 |
+
"""
|
261 |
+
Parses markdown content to identify and extract sections based on headers.
|
262 |
+
"""
|
263 |
+
|
264 |
+
lines = md_content.split("\n")
|
265 |
+
parsed = []
|
266 |
+
current_section = None
|
267 |
+
content = []
|
268 |
+
paper_title = None
|
269 |
+
current_title = None
|
270 |
+
|
271 |
+
# identify sections based on headers
|
272 |
+
for line in lines:
|
273 |
+
if line.startswith("#"):
|
274 |
+
if paper_title is None:
|
275 |
+
paper_title = line.lstrip("#").strip()
|
276 |
+
continue
|
277 |
+
if content:
|
278 |
+
if current_title:
|
279 |
+
parsed.append(
|
280 |
+
{
|
281 |
+
"content": " ".join(content),
|
282 |
+
"title": current_title,
|
283 |
+
"paper_title": paper_title,
|
284 |
+
"content_type": get_content_type(
|
285 |
+
current_section, len(parsed)
|
286 |
+
),
|
287 |
+
"arxiv_id": arxiv_id,
|
288 |
+
}
|
289 |
+
)
|
290 |
+
content = []
|
291 |
+
|
292 |
+
current_title = line.lstrip("#").lstrip("#").lstrip()
|
293 |
+
if "bit" not in current_title:
|
294 |
+
current_title = (
|
295 |
+
current_title.lstrip("123456789")
|
296 |
+
.lstrip()
|
297 |
+
.lstrip(".")
|
298 |
+
.lstrip()
|
299 |
+
.lstrip("123456789")
|
300 |
+
.lstrip()
|
301 |
+
.lstrip(".")
|
302 |
+
.lstrip()
|
303 |
+
)
|
304 |
+
current_section = get_section_type(current_title)
|
305 |
+
|
306 |
+
else:
|
307 |
+
content.append(line)
|
308 |
+
|
309 |
+
# Add the last section
|
310 |
+
if content and current_title:
|
311 |
+
parsed.append(
|
312 |
+
{
|
313 |
+
"content": " ".join(content).replace(")", ") "),
|
314 |
+
"title": current_title,
|
315 |
+
"paper_title": paper_title,
|
316 |
+
"content_type": get_content_type(current_section, len(parsed)),
|
317 |
+
"arxiv_id": arxiv_id,
|
318 |
+
}
|
319 |
+
)
|
320 |
+
|
321 |
+
return parsed
|
322 |
+
|
323 |
+
|
324 |
+
########################################################
|
325 |
+
### Image Dataset
|
326 |
+
########################################################
|
327 |
+
|
328 |
+
|
329 |
+
def download_arxiv_pdf(arxiv_id):
|
330 |
+
arxiv_id = arxiv_id.split("v")[0]
|
331 |
+
url = f"https://arxiv.org/pdf/{arxiv_id}.pdf"
|
332 |
+
response = requests.get(url)
|
333 |
+
if response.status_code == 200:
|
334 |
+
return response.content
|
335 |
+
else:
|
336 |
+
raise Exception(f"Failed to download PDF. Status code: {response.status_code}")
|
337 |
+
|
338 |
+
|
339 |
+
def pdf_to_jpegs(pdf_content, output_folder):
|
340 |
+
# Create output folder if it doesn't exist
|
341 |
+
os.makedirs(output_folder, exist_ok=True)
|
342 |
+
|
343 |
+
# Open the PDF
|
344 |
+
doc = fitz.open(stream=pdf_content, filetype="pdf")
|
345 |
+
|
346 |
+
# Iterate through pages
|
347 |
+
for page_num in range(len(doc)):
|
348 |
+
page = doc.load_page(page_num)
|
349 |
+
|
350 |
+
# Convert page to image
|
351 |
+
pix = page.get_pixmap()
|
352 |
+
|
353 |
+
# Save image as JPEG
|
354 |
+
image_path = os.path.join(output_folder, f"page_{page_num + 1}.jpg")
|
355 |
+
pix.save(image_path)
|
356 |
+
# print(f"Saved {image_path}")
|
357 |
+
|
358 |
+
doc.close()
|
359 |
+
|
360 |
+
|
361 |
+
def save_arxiv_article_images(arxiv_id):
|
362 |
+
output_folder = os.path.join("data", "arxiv_images", arxiv_id)
|
363 |
+
try:
|
364 |
+
pdf_content = download_arxiv_pdf(arxiv_id)
|
365 |
+
pdf_to_jpegs(pdf_content, output_folder)
|
366 |
+
except Exception as e:
|
367 |
+
print(f"An error occurred: {str(e)}")
|
368 |
+
|
369 |
+
|
370 |
+
def create_hf_image_dataset(base_dir):
|
371 |
+
data = []
|
372 |
+
|
373 |
+
# Walk through the directory
|
374 |
+
for root, dirs, files in os.walk(base_dir):
|
375 |
+
for file in files:
|
376 |
+
if file.endswith(".jpg"):
|
377 |
+
# Extract arxiv_id from the path
|
378 |
+
arxiv_id = os.path.basename(root)
|
379 |
+
|
380 |
+
# Extract page number from the filename
|
381 |
+
match = re.search(r"page_(\d+)", file)
|
382 |
+
if match:
|
383 |
+
page_number = int(match.group(1))
|
384 |
+
else:
|
385 |
+
continue # Skip if page number can't be extracted
|
386 |
+
|
387 |
+
# Full path to the image
|
388 |
+
image_path = os.path.join(root, file)
|
389 |
+
|
390 |
+
# Open the image to get its size
|
391 |
+
with PILImage.open(image_path) as img:
|
392 |
+
width, height = img.size
|
393 |
+
|
394 |
+
# Add the data
|
395 |
+
data.append(
|
396 |
+
{
|
397 |
+
"image": image_path,
|
398 |
+
"arxiv_id": arxiv_id,
|
399 |
+
"page_number": page_number,
|
400 |
+
"width": width,
|
401 |
+
"height": height,
|
402 |
+
}
|
403 |
+
)
|
404 |
+
|
405 |
+
# Create the dataset
|
406 |
+
dataset = Dataset.from_dict(
|
407 |
+
{
|
408 |
+
"image": [d["image"] for d in data],
|
409 |
+
"arxiv_id": [d["arxiv_id"] for d in data],
|
410 |
+
"page_number": [d["page_number"] for d in data],
|
411 |
+
"width": [d["width"] for d in data],
|
412 |
+
"height": [d["height"] for d in data],
|
413 |
+
}
|
414 |
+
)
|
415 |
+
|
416 |
+
# Cast the image column to Image
|
417 |
+
dataset = dataset.cast_column("image", Image())
|
418 |
+
|
419 |
+
return dataset
|
420 |
+
|
421 |
+
|
422 |
+
########################################################
|
423 |
+
### HF UPLOAD
|
424 |
+
########################################################
|
425 |
+
|
426 |
+
|
427 |
+
def upload_to_hf(abstract_df, contents_df, processed_arxiv_ids):
|
428 |
+
repo_id = HF_REPO_ID
|
429 |
+
create_repo(
|
430 |
+
repo_id=repo_id,
|
431 |
+
token=os.environ.get("HF_TOKEN"),
|
432 |
+
private=True,
|
433 |
+
repo_type="dataset",
|
434 |
+
exist_ok=True,
|
435 |
+
)
|
436 |
+
|
437 |
+
# upload image dataset
|
438 |
+
img_ds = create_hf_image_dataset("data/arxiv_images")
|
439 |
+
img_ds.push_to_hub(repo_id, "images", token=os.environ.get("HF_TOKEN"))
|
440 |
+
|
441 |
+
# push id_to_abstract
|
442 |
+
abstract_ds = Dataset.from_pandas(abstract_df)
|
443 |
+
abstract_ds.push_to_hub(repo_id, "abstracts", token=os.environ.get("HF_TOKEN"))
|
444 |
+
|
445 |
+
# push arxiv_items
|
446 |
+
arxiv_ds = Dataset.from_pandas(contents_df)
|
447 |
+
arxiv_ds.push_to_hub(repo_id, "articles", token=os.environ.get("HF_TOKEN"))
|
448 |
+
|
449 |
+
# push processed_arxiv_ids
|
450 |
+
processed_arxiv_ids = [{"arxiv_id": arxiv_id} for arxiv_id in processed_arxiv_ids]
|
451 |
+
processed_arxiv_ids_ds = Dataset.from_list(processed_arxiv_ids)
|
452 |
+
processed_arxiv_ids_ds.push_to_hub(
|
453 |
+
repo_id, "processed_arxiv_ids", token=os.environ.get("HF_TOKEN")
|
454 |
+
)
|
455 |
+
|
456 |
+
|
457 |
+
########################################################
|
458 |
+
### MAIN
|
459 |
+
########################################################
|
460 |
+
|
461 |
+
|
462 |
+
def main():
|
463 |
+
items = get_zotero_items(debug=True)
|
464 |
+
print(f"# of items fetched from zotero: {len(items)}")
|
465 |
+
arxiv_items = get_arxiv_items(items)
|
466 |
+
print(f"# of arxiv papers: {len(arxiv_items)}")
|
467 |
+
|
468 |
+
# get already processed arxiv ids from HF
|
469 |
+
try:
|
470 |
+
existing_arxiv_ids = load_dataset(HF_REPO_ID, "processed_arxiv_ids")["train"][
|
471 |
+
"arxiv_id"
|
472 |
+
]
|
473 |
+
except Exception as e:
|
474 |
+
print(e)
|
475 |
+
try:
|
476 |
+
existing_arxiv_ids = srsly.read_json("data/processed_arxiv_ids.json")
|
477 |
+
except Exception as e:
|
478 |
+
print(e)
|
479 |
+
existing_arxiv_ids = []
|
480 |
+
existing_arxiv_ids = set(existing_arxiv_ids)
|
481 |
+
print(f"# of existing arxiv ids: {len(existing_arxiv_ids)}")
|
482 |
+
|
483 |
+
# new arxiv items
|
484 |
+
arxiv_items = [
|
485 |
+
item for item in arxiv_items if item["arxiv_id"] not in existing_arxiv_ids
|
486 |
+
]
|
487 |
+
arxiv_items = fetch_arxiv_htmls(arxiv_items)
|
488 |
+
print(f"# of new arxiv items: {len(arxiv_items)}")
|
489 |
+
|
490 |
+
processed_arxiv_ids = set()
|
491 |
+
for item in arxiv_items:
|
492 |
+
# download images --
|
493 |
+
save_arxiv_article_images(item["arxiv_id"])
|
494 |
+
|
495 |
+
# parse html
|
496 |
+
try:
|
497 |
+
item["contents"] = parse_html_content(item["raw_html"])
|
498 |
+
processed_arxiv_ids.add(item["arxiv_id"])
|
499 |
+
except Exception as e:
|
500 |
+
print(f"Failed to parse html for {item['arxiv_id']}: {e}")
|
501 |
+
item["contents"] = []
|
502 |
+
|
503 |
+
if len(item["contents"]) == 0:
|
504 |
+
print("Extracting from pdf...")
|
505 |
+
md_content = get_pdf_text(item["arxiv_id"]) # fix this
|
506 |
+
if md_content:
|
507 |
+
item["contents"] = parse_markdown_content(md_content, item["arxiv_id"])
|
508 |
+
processed_arxiv_ids.add(item["arxiv_id"])
|
509 |
+
else:
|
510 |
+
item["contents"] = []
|
511 |
+
|
512 |
+
# save contents ---
|
513 |
+
processed_arxiv_ids = list(processed_arxiv_ids)
|
514 |
+
print(f"# of processed arxiv ids: {len(processed_arxiv_ids)}")
|
515 |
+
|
516 |
+
# save abstracts ---
|
517 |
+
id_to_abstract = {}
|
518 |
+
for item in arxiv_items:
|
519 |
+
for entry in item["contents"]:
|
520 |
+
if entry["content_type"] == "abstract":
|
521 |
+
id_to_abstract[item["arxiv_id"]] = entry["content"]
|
522 |
+
break
|
523 |
+
print(f"# of abstracts: {len(id_to_abstract)}")
|
524 |
+
abstract_df = (
|
525 |
+
pd.Series(id_to_abstract)
|
526 |
+
.reset_index()
|
527 |
+
.rename(columns={"index": "arxiv_id", 0: "abstract"})
|
528 |
+
)
|
529 |
+
print(abstract_df.head())
|
530 |
+
|
531 |
+
# add to existing dataset
|
532 |
+
try:
|
533 |
+
old_abstract_df = load_dataset(HF_REPO_ID, "abstracts")["train"].to_pandas()
|
534 |
+
except Exception as e:
|
535 |
+
print(e)
|
536 |
+
old_abstract_df = pd.DataFrame(columns=abstract_df.columns)
|
537 |
+
print(old_abstract_df.head())
|
538 |
+
|
539 |
+
abstract_df = pd.concat([old_abstract_df, abstract_df]).reset_index(drop=True)
|
540 |
+
abstract_df = abstract_df.drop_duplicates(
|
541 |
+
subset=["arxiv_id"], keep="last"
|
542 |
+
).reset_index(drop=True)
|
543 |
+
|
544 |
+
# contents
|
545 |
+
contents_df = pd.DataFrame(arxiv_items)
|
546 |
+
print(contents_df.head())
|
547 |
+
try:
|
548 |
+
old_contents_df = load_dataset(HF_REPO_ID, "articles")["train"].to_pandas()
|
549 |
+
except Exception as e:
|
550 |
+
print(e)
|
551 |
+
old_contents_df = pd.DataFrame(columns=contents_df.columns)
|
552 |
+
if len(old_contents_df) > 0:
|
553 |
+
print(old_contents_df.sample().T)
|
554 |
+
|
555 |
+
contents_df = pd.concat([old_contents_df, contents_df]).reset_index(drop=True)
|
556 |
+
contents_df = contents_df.drop_duplicates(
|
557 |
+
subset=["arxiv_id"], keep="last"
|
558 |
+
).reset_index(drop=True)
|
559 |
+
|
560 |
+
# upload to hf
|
561 |
+
processed_arxiv_ids = list(set(processed_arxiv_ids + list(processed_arxiv_ids)))
|
562 |
+
upload_to_hf(abstract_df, contents_df, processed_arxiv_ids)
|
563 |
+
|
564 |
+
# save as local copy
|
565 |
+
os.makedirs("data", exist_ok=True)
|
566 |
+
abstract_df.to_parquet("data/abstracts.parquet")
|
567 |
+
contents_df.to_parquet("data/contents.parquet")
|
568 |
+
srsly.write_json("data/processed_arxiv_ids.json", processed_arxiv_ids)
|
569 |
+
|
570 |
+
|
571 |
+
def schedule_periodic_task():
|
572 |
+
"""
|
573 |
+
Schedule the main task to run at the user-defined frequency
|
574 |
+
"""
|
575 |
+
main() # run once initially
|
576 |
+
|
577 |
+
frequency = "daily" # TODO: env
|
578 |
+
if frequency == "hourly":
|
579 |
+
print("Scheduling tasks to run every hour at the top of the hour")
|
580 |
+
schedule.every().hour.at(":00").do(main)
|
581 |
+
elif frequency == "daily":
|
582 |
+
start_time = "10:00"
|
583 |
+
print("Scheduling tasks to run every day at: {start_time} UTC+00")
|
584 |
+
schedule.every().day.at(start_time).do(main)
|
585 |
+
|
586 |
+
while True:
|
587 |
+
schedule.run_pending()
|
588 |
+
time.sleep(1)
|
589 |
+
|
590 |
+
|
591 |
+
if __name__ == "__main__":
|
592 |
+
schedule_periodic_task()
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fasthtml-hf>=0.1.1
|
2 |
+
python-fasthtml>=0.0.8
|
3 |
+
huggingface-hub>=0.20.0
|
4 |
+
uvicorn>=0.29
|
5 |
+
schedule==1.2.0
|
6 |
+
supervisor==4.2.5
|
7 |
+
requests
|
8 |
+
srsly
|
9 |
+
python-dotenv
|
10 |
+
beautifulsoup4
|
11 |
+
retry
|
12 |
+
pandas
|
13 |
+
datasets
|
14 |
+
PyMuPDF
|
15 |
+
pillow
|
ruff.toml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
line-length = 128
|
2 |
+
target-version = "py311"
|
3 |
+
ignore = ["E402"]
|
supervisord.conf
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[supervisord]
|
2 |
+
nodaemon=true
|
3 |
+
|
4 |
+
[program:main]
|
5 |
+
command=python main.py
|
6 |
+
stdout_logfile=/dev/stdout
|
7 |
+
stdout_logfile_maxbytes=0
|
8 |
+
stderr_logfile=/dev/stderr
|
9 |
+
stderr_logfile_maxbytes=0
|
10 |
+
autostart=true
|
11 |
+
# autorestart=true
|
12 |
+
|
13 |
+
[program:app]
|
14 |
+
command=python app.py
|
15 |
+
stdout_logfile=/dev/null
|
16 |
+
stdout_logfile_maxbytes=0
|
17 |
+
stderr_logfile=/dev/stderr
|
18 |
+
stderr_logfile_maxbytes=0
|
19 |
+
autostart=true
|
20 |
+
autorestart=true
|