l4-project / app.py
ansfarooq7's picture
Update app.py
e906813
raw
history blame
9.21 kB
from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline, GPT2TokenizerFast
import torch
import pronouncing
import wikipedia
import re
import random
import nltk
import syllables
import gradio as gr
nltk.download('cmudict')
frequent_words = set()
def set_seed(seed: int):
"""
Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch`` and/or ``tf`` (if
installed).
Args:
seed (:obj:`int`): The seed to set.
"""
#random.seed(seed)
#np.random.seed(seed)
#if is_torch_available():
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ^^ safe to call this function even if cuda is not available
#if is_tf_available():
#tf.random.set_seed(seed)
with open("wordFrequency.txt", 'r') as f:
line = f.readline()
while line != '': # The EOF char is an empty string
frequent_words.add(line.strip())
line = f.readline()
def filter_rhymes(word):
filter_list = ['to', 'on', 'has', 'but', 'the', 'in', 'and', 'a', 'aitch', 'angst', 'arugula', 'beige', 'blitzed', 'boing', 'bombed', 'cairn', 'chaos', 'chocolate', 'circle', 'circus', 'cleansed', 'coif', 'cusp', 'doth', 'else', 'eth', 'fiends', 'film', 'flange', 'fourths', 'grilse', 'gulf', 'kiln', 'loge', 'midst', 'month', 'music', 'neutron', 'ninja', 'oblige', 'oink', 'opus', 'orange', 'pint', 'plagued', 'plankton', 'plinth', 'poem', 'poet', 'purple', 'quaich', 'rhythm', 'rouged', 'silver', 'siren', 'soldier', 'sylph', 'thesp', 'toilet', 'torsk', 'tufts', 'waltzed', 'wasp', 'wharves', 'width', 'woman', 'yttrium']
if word in filter_list:
return False
else:
return True
def remove_punctuation(text):
text = re.sub(r'[^\w\s]', '', text)
return text
def get_rhymes(inp, level):
entries = nltk.corpus.cmudict.entries()
syllables = [(word, syl) for word, syl in entries if word == inp]
rhymes = []
filtered_rhymes = set()
for (word, syllable) in syllables:
rhymes += [word for word, pron in entries if pron[-level:] == syllable[-level:]]
for word in rhymes:
if (word in frequent_words) and (word != inp):
filtered_rhymes.add(word)
return filtered_rhymes
def get_inputs_length(input):
gpt2_tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
input_ids = gpt2_tokenizer(input)['input_ids']
return len(input_ids)
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaForMaskedLM.from_pretrained('roberta-base')
text_generation = pipeline("text-generation")
set_seed(0)
def get_prediction(sent):
token_ids = tokenizer.encode(sent, return_tensors='pt')
masked_position = (token_ids.squeeze() == tokenizer.mask_token_id).nonzero()
masked_pos = [mask.item() for mask in masked_position ]
with torch.no_grad():
output = model(token_ids)
last_hidden_state = output[0].squeeze()
list_of_list =[]
for index,mask_index in enumerate(masked_pos):
words = []
mask_hidden_state = last_hidden_state[mask_index]
idx = torch.topk(mask_hidden_state, k=5, dim=0)[1]
for i in idx:
word = tokenizer.decode(i.item()).strip()
if (remove_punctuation(word) != "") and (word != '</s>'):
words.append(word)
#words = [tokenizer.decode(i.item()).strip() for i in idx]
list_of_list.append(words)
print(f"Mask {index+1} Guesses: {words}")
best_guess = ""
for j in list_of_list:
best_guess = best_guess+" "+j[0]
return best_guess
def get_line(topic_summary, starting_words, inputs_len):
starting_word = random.choice(starting_words)
line = starting_word + text_generation(topic_summary + " " + starting_word, max_length=inputs_len + 6, do_sample=True, return_full_text=False)[0]['generated_text']
return line
def get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len):
#gpt2_sentence = text_generation(topic_summary + " " + starting_words[i][j], max_length=no_of_words + 4, do_sample=False)[0]
starting_word = random.choice(starting_words)
print(f"\nGetting rhyming line with starting word '{starting_word}' and rhyming word '{rhyming_word}'")
gpt2_sentence = text_generation(topic_summary + " " + starting_word, max_length=inputs_len + 2, do_sample=True, return_full_text=False)[0]
#sentence = gpt2_sentence['generated_text'] + " ___ ___ ___ " + rhyming_words[i][j]
sentence = starting_word + gpt2_sentence['generated_text'] + " ___ ___ ___ " + rhyming_word
print(f"Original Sentence: {sentence}")
if sentence[-1] != ".":
sentence = sentence.replace("___","<mask>") + "."
else:
sentence = sentence.replace("___","<mask>")
print(f"Original Sentence replaced with mask: {sentence}")
print("\n")
predicted_blanks = get_prediction(sentence)
print(f"\nBest guess for fill in the blanks: {predicted_blanks}")
return starting_word + gpt2_sentence['generated_text'] + predicted_blanks + " " + rhyming_word
from transformers import pipeline
def generate(topic):
text_generation = pipeline("text-generation")
limericks = []
#topic = input("Please enter a topic: ")
topic_summary = remove_punctuation(wikipedia.summary(topic))
# if len(topic_summary) > 2000:
# topic_summary = topic_summary[:2000]
word_list = topic_summary.split()
topic_summary_len = len(topic_summary)
no_of_words = len(word_list)
inputs_len = get_inputs_length(topic_summary)
print(f"Topic Summary: {topic_summary}")
print(f"Topic Summary Length: {topic_summary_len}")
print(f"No of Words in Summary: {no_of_words}")
print(f"Length of Input IDs: {inputs_len}")
starting_words = ["That", "Had", "Not", "But", "With", "I", "Because", "There", "Who", "She", "He", "To", "Whose", "In", "And", "When", "Or", "So", "The", "Of", "Every", "Whom"]
# starting_words = [["That", "Had", "Not", "But", "That"],
# ["There", "Who", "She", "Tormenting", "Til"],
# ["Relentless", "This", "First", "and", "then"],
# ["There", "Who", "That", "To", "She"],
# ["There", "Who", "Two", "Four", "Have"]]
# rhyming_words = [["told", "bold", "woodchuck", "truck", "road"],
# ["Nice", "grease", "house", "spouse", "peace"],
# ["deadlines", "lines", "edits", "credits", "wine"],
# ["Lynn", "thin", "essayed", "lemonade", "in"],
# ["beard", "feared", "hen", "wren", "beard"]]
for i in range(5):
print(f"\nGenerating limerick {i+1}")
rhyming_words_125 = []
while len(rhyming_words_125) < 3 or valid_rhyme == False:
first_line = get_line(topic_summary, starting_words, inputs_len)
#rhyming_words = pronouncing.rhymes(first_line.split()[-1])
end_word = remove_punctuation(first_line.split()[-1])
valid_rhyme = filter_rhymes(end_word)
if valid_rhyme:
print(f"\nFirst Line: {first_line}")
rhyming_words_125 = list(get_rhymes(end_word, 3))
print(f"Rhyming words for '{end_word}' are {rhyming_words_125}")
limerick = first_line + "\n"
rhyming_word = rhyming_words_125[0]
second_line = get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len)
limerick += second_line + "\n"
rhyming_words_34 = []
while len(rhyming_words_34) < 2 or valid_rhyme == False:
third_line = get_line(topic_summary, starting_words, inputs_len)
print(f"\nThird Line: {third_line}")
#rhyming_words = pronouncing.rhymes(first_line.split()[-1])
end_word = remove_punctuation(third_line.split()[-1])
valid_rhyme = filter_rhymes(end_word)
print(f"Does '{end_word}'' have valid rhymes: {valid_rhyme}")
rhyming_words_34 = list(get_rhymes(end_word, 3))
print(f"Rhyming words for '{end_word}' are {rhyming_words_34}")
if valid_rhyme and len(rhyming_words_34) > 1:
limerick += third_line + "\n"
rhyming_word = rhyming_words_34[0]
fourth_line = get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len)
limerick += fourth_line + "\n"
rhyming_word = rhyming_words_125[1]
fifth_line = get_rhyming_line(topic_summary, starting_words, rhyming_word, inputs_len)
limerick += fifth_line + "\n"
limericks.append(limerick)
print("\n")
output = f"Generated {len(limericks)} limericks: \n"
print(f"Generated {len(limericks)} limericks: \n")
for limerick in limericks:
print(limerick)
output += limerick
return output
interface = gr.Interface(fn=generate, inputs="text", outputs="text")
interface.launch(debug=True)