AIShurA / app.py
ans123's picture
Update app.py
1949eee verified
raw
history blame
76 kB
# filename: app_openai_no_serper.py
import gradio as gr
import pandas as pd
import numpy as np
# import matplotlib.pyplot as plt # Not directly used for plotting
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import random
import json
import os
import time
import requests # Keep for potential future internal API calls if needed, but not for Serper
from typing import List, Dict, Any, Optional
import logging
from dotenv import load_dotenv
# import pytz # Not used
import uuid
import re
# import base64 # Not used
# from io import BytesIO # Not used
# from PIL import Image # Not used
# --- Use OpenAI library ---
import openai
# --- Load environment variables ---
load_dotenv()
# --- Set up logging ---
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Configure API keys ---
# Make sure you have OPENAI_API_KEY in your .env file or environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# SERPER_API_KEY = os.getenv("SERPER_API_KEY") # Removed Serper key
if not OPENAI_API_KEY:
logger.warning("OPENAI_API_KEY not found. AI features will not work.")
# if not SERPER_API_KEY: # Removed Serper check
# logger.warning("SERPER_API_KEY not found. Web search features will not work.")
# --- Initialize the OpenAI client ---
try:
client = openai.OpenAI(api_key=OPENAI_API_KEY)
logger.info("OpenAI client initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {e}")
client = None
# --- Model configuration ---
MODEL_ID = "gpt-4o" # Use OpenAI GPT-4o model
# --- Constants ---
EMOTIONS = ["Unmotivated 😩", "Anxious πŸ˜₯", "Confused πŸ€”", "Excited πŸŽ‰", "Overwhelmed 🀯", "Discouraged πŸ˜”"]
# Added Emojis and changed label text
GOAL_TYPES = [
"Get a job at a big company 🏒",
"Find an internship πŸŽ“",
"Change careers πŸš€",
"Improve skills πŸ’‘",
"Network better 🀝"
]
USER_DB_PATH = "user_database.json"
RESUME_FOLDER = "user_resumes"
PORTFOLIO_FOLDER = "user_portfolios"
# Ensure folders exist
os.makedirs(RESUME_FOLDER, exist_ok=True)
os.makedirs(PORTFOLIO_FOLDER, exist_ok=True)
# --- Tool Definitions for OpenAI (Removed Job Search Tool) ---
tools_list = [
# { # Removed get_job_opportunities tool definition
# "type": "function",
# "function": { ... }
# },
{
"type": "function",
"function": {
"name": "generate_document_template",
"description": "Generate a document template (like a resume or cover letter) based on type, career field, and experience level.",
"parameters": {
"type": "object",
"properties": {
"document_type": {
"type": "string",
"description": "Type of document (e.g., Resume, Cover Letter, Self-introduction).",
},
"career_field": {
"type": "string",
"description": "The career field or industry.",
},
"experience_level": {
"type": "string",
"description": "User's experience level (e.g., Entry, Mid, Senior).",
},
},
"required": ["document_type"],
},
}
},
{
"type": "function",
"function": {
"name": "create_personalized_routine",
"description": "Create a personalized daily or weekly career development routine based on the user's current emotion, goals, and available time.",
"parameters": {
"type": "object",
"properties": {
"emotion": {
"type": "string",
"description": "User's current primary emotional state (e.g., Unmotivated, Anxious). Needs to be one of the predefined emotions.",
},
"goal": {
"type": "string",
"description": "User's specific career goal for this routine.",
},
"available_time_minutes": {
"type": "integer",
"description": "Available time in minutes per day (default 60).",
},
"routine_length_days": {
"type": "integer",
"description": "Length of the routine in days (default 7).",
},
},
"required": ["emotion", "goal"],
},
}
},
{
"type": "function",
"function": {
"name": "analyze_resume",
"description": "Analyze the provided resume text and provide feedback, comparing it against the user's stated career goal.",
"parameters": {
"type": "object",
"properties": {
"resume_text": {
"type": "string",
"description": "The full text of the user's resume.",
},
"career_goal": {
"type": "string",
"description": "The user's career goal or target job/industry to analyze against.",
},
},
"required": ["resume_text", "career_goal"],
},
}
},
{
"type": "function",
"function": {
"name": "analyze_portfolio",
"description": "Analyze a user's portfolio based on a URL (if provided) and a description, offering feedback relative to their career goal.",
"parameters": {
"type": "object",
"properties": {
"portfolio_url": {
"type": "string",
"description": "URL to the user's online portfolio (optional).",
},
"portfolio_description": {
"type": "string",
"description": "Detailed description of the portfolio's content, purpose, and structure.",
},
"career_goal": {
"type": "string",
"description": "The user's career goal or target job/industry to analyze against.",
},
},
"required": ["portfolio_description", "career_goal"],
},
}
},
{
"type": "function",
"function": {
"name": "extract_and_rate_skills_from_resume",
"description": "Extracts key skills from resume text and rates them on a scale of 1-10 based on apparent proficiency shown in the resume.",
"parameters": {
"type": "object",
"properties": {
"resume_text": {
"type": "string",
"description": "The full text of the user's resume.",
},
"max_skills": {
"type": "integer",
"description": "Maximum number of skills to extract (default 8).",
},
},
"required": ["resume_text"],
},
}
}
]
# --- User Database Functions ---
# (Keep load_user_database, save_user_database, get_user_profile,
# update_user_profile, add_task_to_user, add_emotion_record,
# add_routine_to_user, save_user_resume, save_user_portfolio,
# add_recommendation_to_user, add_chat_message - unchanged from previous corrected version)
def load_user_database():
"""Load user database from JSON file or create if it doesn't exist"""
try:
# Ensure correct encoding for wider compatibility
with open(USER_DB_PATH, 'r', encoding='utf-8') as file:
db = json.load(file)
# Validate and fix chat history structure
for user_id in db.get('users', {}):
profile = db['users'][user_id]
if 'chat_history' not in profile or not isinstance(profile['chat_history'], list):
profile['chat_history'] = []
else:
fixed_history = []
for msg in profile['chat_history']:
if isinstance(msg, dict) and 'role' in msg and 'content' in msg:
# Ensure content is string for user/assistant if not None
if msg['role'] in ['user', 'assistant'] and msg['content'] is not None and not isinstance(msg['content'], str):
msg['content'] = str(msg['content'])
fixed_history.append(msg)
elif isinstance(msg, dict) and msg.get('role') == 'tool' and all(k in msg for k in ['tool_call_id', 'name', 'content']):
# Ensure tool content is string
if not isinstance(msg['content'], str):
msg['content'] = json.dumps(msg['content']) if msg['content'] is not None else ""
fixed_history.append(msg)
else:
# Attempt to fix older formats or log invalid message
if isinstance(msg, dict) and 'message' in msg and 'role' in msg:
msg['content'] = str(msg.pop('message'))
fixed_history.append(msg)
else:
logger.warning(f"Skipping invalid chat message structure for user {user_id}: {msg}")
profile['chat_history'] = fixed_history
# Ensure recommendations is a list
if 'recommendations' not in profile or not isinstance(profile['recommendations'], list):
profile['recommendations'] = []
return db
except (FileNotFoundError, json.JSONDecodeError):
logger.info(f"Database file '{USER_DB_PATH}' not found or invalid. Creating new one.")
db = {'users': {}}
save_user_database(db)
return db
except Exception as e:
logger.error(f"Error loading user database from {USER_DB_PATH}: {e}")
return {'users': {}} # Return empty DB on critical error
def save_user_database(db):
"""Save user database to JSON file"""
try:
with open(USER_DB_PATH, 'w', encoding='utf-8') as file:
json.dump(db, file, indent=4, ensure_ascii=False)
except Exception as e:
logger.error(f"Error saving user database to {USER_DB_PATH}: {e}")
def get_user_profile(user_id):
"""Get user profile from database or create new one"""
db = load_user_database()
if user_id not in db.get('users', {}):
db['users'] = db.get('users', {}) # Ensure 'users' key exists
db['users'][user_id] = {
"user_id": user_id,
"name": "",
"location": "",
"current_emotion": "",
"career_goal": "", # Renamed from career_goal in UI, but keep key consistent internally for now
"progress_points": 0,
"completed_tasks": [],
"upcoming_events": [],
"routine_history": [],
"daily_emotions": [],
"resume_path": "",
"portfolio_path": "",
"recommendations": [],
"chat_history": [], # Initialize chat history
"joined_date": datetime.now().isoformat()
}
save_user_database(db)
# Validate essential lists exist
profile = db.get('users', {}).get(user_id, {})
if 'chat_history' not in profile or not isinstance(profile.get('chat_history'), list):
profile['chat_history'] = []
# save_user_database(db) # Avoid saving just for this check unless needed
if 'recommendations' not in profile or not isinstance(profile.get('recommendations'), list):
profile['recommendations'] = []
if 'daily_emotions' not in profile or not isinstance(profile.get('daily_emotions'), list):
profile['daily_emotions'] = []
if 'completed_tasks' not in profile or not isinstance(profile.get('completed_tasks'), list):
profile['completed_tasks'] = []
if 'routine_history' not in profile or not isinstance(profile.get('routine_history'), list):
profile['routine_history'] = []
return profile
def update_user_profile(user_id, updates):
"""Update user profile with new information"""
db = load_user_database()
if user_id in db.get('users', {}):
profile = db['users'][user_id]
for key, value in updates.items():
profile[key] = value
save_user_database(db)
return profile
else:
logger.warning(f"Attempted to update non-existent user profile: {user_id}")
return None
def add_task_to_user(user_id, task):
"""Add a new task to user's completed tasks"""
db = load_user_database()
profile = db.get('users', {}).get(user_id)
if profile:
if 'completed_tasks' not in profile or not isinstance(profile['completed_tasks'], list):
profile['completed_tasks'] = []
task_with_date = {
"task": task,
"date": datetime.now().isoformat() # Use ISO format
}
profile['completed_tasks'].append(task_with_date)
profile['progress_points'] = profile.get('progress_points', 0) + random.randint(10, 25)
save_user_database(db)
return profile
return None
def add_emotion_record(user_id, emotion):
"""Add a new emotion record to user's daily emotions"""
cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion
db = load_user_database()
profile = db.get('users', {}).get(user_id)
if profile:
if 'daily_emotions' not in profile or not isinstance(profile['daily_emotions'], list):
profile['daily_emotions'] = []
emotion_record = {
"emotion": cleaned_emotion, # Store cleaned emotion
"date": datetime.now().isoformat() # Use ISO format
}
profile['daily_emotions'].append(emotion_record)
profile['current_emotion'] = cleaned_emotion
save_user_database(db)
return profile
return None
def add_routine_to_user(user_id, routine):
"""Add a new routine to user's routine history"""
db = load_user_database()
profile = db.get('users', {}).get(user_id)
if profile:
if 'routine_history' not in profile or not isinstance(profile['routine_history'], list):
profile['routine_history'] = []
try:
days_delta = int(routine.get('days', 7))
except (ValueError, TypeError): days_delta = 7
end_date = (datetime.now() + timedelta(days=days_delta)).isoformat()
routine_with_date = {
"routine": routine,
"start_date": datetime.now().isoformat(),
"end_date": end_date, "completion": 0
}
profile['routine_history'].insert(0, routine_with_date)
profile['routine_history'] = profile['routine_history'][:10]
save_user_database(db)
return profile
return None
def save_user_resume(user_id, resume_text):
"""Save user's resume text to file and update profile path."""
if not resume_text: return None
filename = f"{user_id}_resume.txt"
filepath = os.path.join(RESUME_FOLDER, filename)
try:
with open(filepath, 'w', encoding='utf-8') as file: file.write(resume_text)
update_user_profile(user_id, {"resume_path": filepath})
logger.info(f"Resume saved for user {user_id} at {filepath}")
return filepath
except Exception as e:
logger.error(f"Error saving resume for user {user_id}: {e}")
return None
def save_user_portfolio(user_id, portfolio_url, portfolio_description):
"""Save user's portfolio info (URL and description) to file."""
if not portfolio_description: return None
filename = f"{user_id}_portfolio.json"
filepath = os.path.join(PORTFOLIO_FOLDER, filename)
portfolio_content = {"url": portfolio_url, "description": portfolio_description, "saved_date": datetime.now().isoformat()}
try:
with open(filepath, 'w', encoding='utf-8') as file: json.dump(portfolio_content, file, indent=4, ensure_ascii=False)
update_user_profile(user_id, {"portfolio_path": filepath})
logger.info(f"Portfolio info saved for user {user_id} at {filepath}")
return filepath
except Exception as e:
logger.error(f"Error saving portfolio info for user {user_id}: {e}")
return None
def add_recommendation_to_user(user_id, recommendation):
"""Add a new recommendation object to user's list"""
db = load_user_database()
profile = db.get('users', {}).get(user_id)
if profile:
if 'recommendations' not in profile or not isinstance(profile['recommendations'], list): profile['recommendations'] = []
recommendation_with_date = {"recommendation": recommendation, "date": datetime.now().isoformat(), "status": "pending"}
profile['recommendations'].insert(0, recommendation_with_date)
profile['recommendations'] = profile['recommendations'][:20]
save_user_database(db)
return profile
return None
def add_chat_message(user_id, role, content):
"""Add a message to the user's chat history using OpenAI format."""
db = load_user_database()
profile = db.get('users', {}).get(user_id)
if profile:
if 'chat_history' not in profile or not isinstance(profile['chat_history'], list): profile['chat_history'] = []
if role not in ['user', 'assistant', 'system', 'tool']:
logger.warning(f"Invalid role '{role}' provided for chat message."); return profile
# Allow None content for assistant (tool calls) and stringify tool content if needed
if role == 'tool' and content is not None and not isinstance(content, str):
content = json.dumps(content)
elif role == 'assistant' and content is None:
content = "" # Store empty string instead of None for assistant text content
elif not content and role == 'user':
logger.warning(f"Empty content provided for chat role 'user'. Skipping save."); #return profile # Skip saving empty user messages
chat_message = {"role": role, "content": content, "timestamp": datetime.now().isoformat()}
profile['chat_history'].append(chat_message)
# Limit history
max_history = 50
if len(profile['chat_history']) > max_history:
system_msgs = [m for m in profile['chat_history'] if m['role'] == 'system']
other_msgs = [m for m in profile['chat_history'] if m['role'] != 'system']
profile['chat_history'] = system_msgs + other_msgs[-max_history:]
save_user_database(db)
return profile
return None
# --- Basic Routine Fallback Function ---
def generate_basic_routine(emotion, goal, available_time=60, days=7):
"""Generate a basic routine as fallback."""
logger.info(f"Generating basic fallback routine for emotion={emotion}, goal={goal}")
routine_types = {
"job_search": [
{"name": "Research Target Companies", "points": 15, "duration": 20, "description": "Identify 3 potential employers aligned with your goal."},
{"name": "Update LinkedIn Section", "points": 15, "duration": 25, "description": "Refine one section of your LinkedIn profile (e.g., summary, experience)."},
{"name": "Practice STAR Method", "points": 20, "duration": 15, "description": "Outline one experience using the STAR method for interviews."},
{"name": "Find Networking Event", "points": 10, "duration": 10, "description": "Look for one relevant online or local networking event."}
],
"skill_building": [
{"name": "Online Tutorial (1 Module)", "points": 25, "duration": 45, "description": "Complete one module of a relevant online course/tutorial."},
{"name": "Read Industry Blog/Article", "points": 10, "duration": 15, "description": "Read and summarize one article about trends in your field."},
{"name": "Small Project Task", "points": 30, "duration": 60, "description": "Dedicate time to a specific task within a personal project."},
{"name": "Review Skill Documentation", "points": 15, "duration": 30, "description": "Read documentation or examples for a skill you're learning."}
],
"motivation_wellbeing": [
{"name": "Mindful Reflection", "points": 10, "duration": 10, "description": "Spend 10 minutes reflecting on progress and challenges without judgment."},
{"name": "Set 1-3 Daily Intentions", "points": 10, "duration": 5, "description": "Define small, achievable goals for the day."},
{"name": "Short Break/Walk", "points": 15, "duration": 15, "description": "Take a brief break away from screens, preferably with light movement."},
{"name": "Connect with Support", "points": 20, "duration": 20, "description": "Briefly chat with a friend, mentor, or peer about your journey."}
]
}
cleaned_emotion = emotion.split(" ")[0].lower() if " " in emotion else emotion.lower()
negative_emotions = ["unmotivated", "anxious", "confused", "overwhelmed", "discouraged"]
if "job" in goal.lower() or "internship" in goal.lower() or "company" in goal.lower(): base_type = "job_search"
elif "skill" in goal.lower() or "learn" in goal.lower(): base_type = "skill_building"
elif "network" in goal.lower(): base_type = "job_search"
else: base_type = "skill_building"
include_wellbeing = cleaned_emotion in negative_emotions
daily_tasks_list = []
for day in range(1, days + 1):
day_tasks, remaining_time, tasks_added_count = [], available_time, 0
possible_tasks = routine_types[base_type].copy()
if include_wellbeing: possible_tasks.extend(routine_types["motivation_wellbeing"])
random.shuffle(possible_tasks)
for task in possible_tasks:
if task["duration"] <= remaining_time and tasks_added_count < 3:
day_tasks.append(task); remaining_time -= task["duration"]; tasks_added_count += 1
if remaining_time < 10 or tasks_added_count >= 3: break
daily_tasks_list.append({"day": day, "tasks": day_tasks})
routine = {"name": f"{days}-Day Focus Plan", "description": f"A basic {days}-day plan focusing on '{goal}' while acknowledging feeling {cleaned_emotion}.", "days": days, "daily_tasks": daily_tasks_list}
return routine
# --- Tool Implementation Functions ---
# (Keep generate_document_template, create_personalized_routine,
# analyze_resume, analyze_portfolio, extract_and_rate_skills_from_resume - unchanged from previous corrected version)
# Note: get_job_opportunities function is now removed.
def generate_document_template(document_type: str, career_field: str = "", experience_level: str = "") -> str:
"""Generates a basic markdown template for the specified document type."""
logger.info(f"Executing tool: generate_document_template(document_type='{document_type}', career_field='{career_field}', experience_level='{experience_level}')")
template = f"## Basic Template: {document_type}\n\n"
template += f"**Target Field:** {career_field or 'Not specified'}\n"
template += f"**Experience Level:** {experience_level or 'Not specified'}\n\n---\n\n"
if "resume" in document_type.lower():
template += ("### Contact Information\n- Name:\n- Phone:\n- Email:\n- LinkedIn URL:\n- Portfolio URL (Optional):\n\n"
"### Summary/Objective\n_[ 2-3 sentences summarizing your key skills, experience, and career goals, tailored to the job/field. ]_\n\n"
"### Experience\n**Company Name** | Location | Job Title | _Start Date – End Date_\n- Accomplishment 1 (Use action verbs and quantify results, e.g., 'Increased sales by 15%...')\n- Accomplishment 2\n\n_[ Repeat for other relevant positions ]_\n\n"
"### Education\n**University/Institution Name** | Degree | _Graduation Date (or Expected)_\n- Relevant coursework, honors, activities (Optional)\n\n"
"### Skills\n- **Technical Skills:** [ e.g., Python, Java, SQL, MS Excel, Google Analytics ]\n- **Languages:** [ e.g., English (Native), Spanish (Fluent) ]\n- **Other:** [ Certifications, relevant tools ]\n")
elif "cover letter" in document_type.lower():
template += ("[Your Name]\n[Your Address]\n[Your Phone]\n[Your Email]\n\n"
"[Date]\n\n"
"[Hiring Manager Name (if known), or 'Hiring Team']\n[Hiring Manager Title (if known)]\n[Company Name]\n[Company Address]\n\n"
"**Subject: Application for [Job Title] Position - [Your Name]**\n\n"
"Dear [Mr./Ms./Mx. Last Name or Hiring Team],\n\n"
"**Introduction:** State the position you are applying for and where you saw the advertisement. Briefly express your enthusiasm for the role and the company. Mention 1-2 key qualifications that make you a strong fit.\n_[ Example: I am writing to express my strong interest in the [Job Title] position advertised on [Platform]. With my background in [Relevant Field] and proven ability to [Key Skill], I am confident I possess the skills and experience necessary to excel in this role and contribute significantly to [Company Name]. ]_\n\n"
"**Body Paragraph(s):** Elaborate on your qualifications and experiences, directly addressing the requirements listed in the job description. Provide specific examples (using the STAR method implicitly can be effective). Explain why you are interested in *this specific* company and role. Show you've done your research.\n_[ Example: In my previous role at [Previous Company], I was responsible for [Responsibility relevant to new job]. I successfully [Quantifiable achievement relevant to new job], demonstrating my ability to [Skill required by new job]. I am particularly drawn to [Company Name]'s work in [Specific area company works in], as described in [Source, e.g., recent news, company website], and I believe my [Relevant skill/experience] would be a valuable asset to your team. ]_\n\n"
"**Conclusion:** Reiterate your strong interest and suitability for the role. Briefly summarize your key strengths. State your call to action (e.g., "I am eager to discuss my qualifications further..."). Thank the reader for their time and consideration.\n_[ Example: Thank you for considering my application. My resume provides further detail on my qualifications. I am excited about the opportunity to contribute to [Company Name] and look forward to hearing from you soon. ]_\n\n"
"Sincerely,\n\n[Your Typed Name]")
elif "linkedin summary" in document_type.lower():
template += ("### LinkedIn Summary/About Section Template\n\n"
"**Headline:** [ A concise, keyword-rich description of your professional identity, e.g., 'Software Engineer specializing in AI | Python | Cloud Computing | Seeking Innovative Opportunities' ]\n\n"
"**About Section:**\n"
"_[ Paragraph 1: Hook & Overview. Start with a compelling statement about your passion, expertise, or career mission. Briefly introduce who you are professionally and your main areas of focus. Use keywords relevant to your field and desired roles. ]_\n\n"
"_[ Paragraph 2: Key Skills & Experience Highlights. Detail your core competencies and technical/soft skills. Mention key experiences or types of projects you've worked on. Quantify achievements where possible. Tailor this to the audience you want to attract (recruiters, clients, peers). ]_\n\n"
"_[ Paragraph 3: Career Goals & What You're Seeking (Optional but recommended). Briefly state your career aspirations or the types of opportunities, connections, or collaborations you are looking for. ]_\n\n"
"_[ Paragraph 4: Call to Action / Personality (Optional). You might end with an invitation to connect, mention personal interests related to your field, or add a touch of personality. ]_\n\n"
"**Specialties/Keywords:** [ List 5-10 key terms related to your skills and industry, e.g., Project Management, Data Analysis, Agile Methodologies, Content Strategy, Java, Cloud Security ]")
else:
template += "_[ Basic structure for this document type will be provided here. ]_"
# Return as JSON string, even though AI might generate markdown directly
return json.dumps({"template_markdown": template})
def create_personalized_routine(emotion: str, goal: str, available_time_minutes: int = 60, routine_length_days: int = 7) -> str:
"""Creates a personalized routine, falling back to basic generation if needed."""
logger.info(f"Executing tool: create_personalized_routine(emotion='{emotion}', goal='{goal}', time={available_time_minutes}, days={routine_length_days})")
try:
logger.warning("create_personalized_routine tool is using the basic fallback generation.")
routine = generate_basic_routine(emotion, goal, available_time_minutes, routine_length_days)
if not routine: raise ValueError("Basic routine generation failed.")
logger.info(f"Generated routine: {routine.get('name', 'Unnamed Routine')}")
return json.dumps(routine)
except Exception as e:
logger.error(f"Error in create_personalized_routine tool: {e}")
try: # Attempt fallback again
routine = generate_basic_routine(emotion, goal, available_time_minutes, routine_length_days)
return json.dumps(routine) if routine else json.dumps({"error": "Failed to generate routine."})
except Exception as fallback_e:
logger.error(f"Fallback routine generation also failed: {fallback_e}")
return json.dumps({"error": f"Failed to generate routine: {e}"})
def analyze_resume(resume_text: str, career_goal: str) -> str:
"""Provides analysis of the resume using AI (Simulated)."""
logger.info(f"Executing tool: analyze_resume(career_goal='{career_goal}', resume_length={len(resume_text)})")
logger.warning("analyze_resume tool is using placeholder analysis.")
analysis = { "analysis": { "strengths": ["Placeholder: Clear objective/summary.", "Placeholder: Good use of action verbs."], "areas_for_improvement": ["Placeholder: Quantify achievements more.", f"Placeholder: Tailor skills section better for '{career_goal}'."], "format_feedback": "Placeholder: Overall format is clean, but consider standardizing date formats.", "content_feedback": f"Placeholder: Experience seems partially relevant to '{career_goal}', but highlight transferable skills.", "keyword_suggestions": ["Placeholder: Add keywords like 'Keyword1', 'Keyword2' relevant to goal."], "next_steps": ["Placeholder: Refine descriptions for last 2 roles.", "Placeholder: Add a project section if applicable."] } }
return json.dumps(analysis)
def analyze_portfolio(portfolio_description: str, career_goal: str, portfolio_url: str = "") -> str:
"""Provides analysis of the portfolio using AI (Simulated)."""
logger.info(f"Executing tool: analyze_portfolio(career_goal='{career_goal}', url='{portfolio_url}', desc_length={len(portfolio_description)})")
logger.warning("analyze_portfolio tool is using placeholder analysis.")
analysis = { "analysis": { "alignment_with_goal": f"Placeholder: Portfolio description suggests moderate alignment with '{career_goal}'.", "strengths": ["Placeholder: Variety of projects mentioned.", "Placeholder: Clear description provided."], "areas_for_improvement": ["Placeholder: Ensure project descriptions explicitly link to skills needed for the goal.", "Placeholder: Consider adding testimonials or case study depth."], "presentation_feedback": f"Placeholder: If URL ({portfolio_url}) provided, check for mobile responsiveness and clear navigation (visual analysis needed). Based on description, sounds organized.", "next_steps": ["Placeholder: Select 2-3 best projects strongly related to the goal and feature them prominently.", "Placeholder: Get feedback from peers in the target field."] } }
return json.dumps(analysis)
def extract_and_rate_skills_from_resume(resume_text: str, max_skills: int = 8) -> str:
"""Extracts and rates skills from resume text (Simulated)."""
logger.info(f"Executing tool: extract_and_rate_skills_from_resume(resume_length={len(resume_text)}, max_skills={max_skills})")
logger.warning("extract_and_rate_skills_from_resume tool is using placeholder extraction.")
possible_skills = ["Python", "Java", "JavaScript", "Project Management", "Communication", "Data Analysis", "Teamwork", "Leadership", "SQL", "React", "Customer Service", "Problem Solving", "Cloud Computing (AWS/Azure/GCP)", "Agile Methodologies", "Machine Learning"]
found_skills = []
resume_lower = resume_text.lower()
for skill in possible_skills:
if re.search(r'\b' + re.escape(skill.lower()) + r'\b', resume_lower):
found_skills.append({"name": skill, "score": random.randint(4, 9)})
if len(found_skills) >= max_skills: break
if not found_skills and len(resume_text) > 50:
found_skills = [ {"name": "Communication", "score": random.randint(5,8)}, {"name": "Teamwork", "score": random.randint(5,8)}, {"name": "Problem Solving", "score": random.randint(5,8)}, ]
logger.info(f"Extracted skills (placeholder): {[s['name'] for s in found_skills]}")
return json.dumps({"skills": found_skills[:max_skills]})
# --- AI Interaction Logic (Using OpenAI) ---
def get_ai_response(user_id: str, user_input: str, generate_recommendations: bool = True) -> str:
"""Gets response from OpenAI, handling context, system prompt, and tool calls."""
logger.info(f"Getting AI response for user {user_id}. Input: '{user_input[:100]}...'")
if not client:
return "I apologize, the AI service is currently unavailable. Please check the configuration."
try:
user_profile = get_user_profile(user_id)
if not user_profile:
logger.error(f"Failed to retrieve profile for user {user_id}.")
return "Sorry, I couldn't access your profile information right now."
current_emotion_display = user_profile.get('current_emotion', 'Not specified')
# --- System Prompt Updated ---
system_prompt = f"""
You are Aishura, an emotionally intelligent AI career assistant. Your primary goal is to provide empathetic, realistic, and actionable career guidance. Always follow these steps:
1. Acknowledge the user's message and, if applicable, their expressed emotion (e.g., "I understand you're feeling {current_emotion_display}..."). Use empathetic language.
2. Directly address the user's query or statement.
3. Proactively offer relevant support using your available tools: suggest generating document templates (`generate_document_template`), creating a personalized routine (`create_personalized_routine`), analyzing their resume (`analyze_resume`) or portfolio (`analyze_portfolio`) if appropriate or if they mention them.
4. **Job Suggestions:** If the user asks for job opportunities or related help, **do not use a tool**. Instead, generate 2-3 plausible job titles/roles based on their stated main goal ('{user_profile.get('career_goal', 'Not specified')}') and location ('{user_profile.get('location', 'Not specified')}'). If they have provided a resume (path: '{user_profile.get('resume_path', '')}'), mention how their skills might align with these roles. Keep suggestions general and indicate they are examples, not live listings.
5. Tailor your response based on the user's profile: Name: {user_profile.get('name', 'User')}, Location: {user_profile.get('location', 'Not specified')}, Goal: {user_profile.get('career_goal', 'Not specified')}.
6. If the user has uploaded a resume or portfolio (check paths above), mention you can analyze them or reference previous analysis if relevant.
7. Keep responses concise, friendly, and focused on next steps. Use markdown for formatting.
8. If a tool call fails, inform the user gracefully (e.g., "I couldn't generate the template right now...") and suggest alternatives. Do not show raw error messages.
"""
# --- Build Message History ---
messages = [{"role": "system", "content": system_prompt}]
chat_history = user_profile.get('chat_history', [])
for msg in chat_history:
if isinstance(msg, dict) and 'role' in msg and 'content' in msg:
# Handle potential None content for assistant messages (tool calls)
content = msg['content'] if msg['content'] is not None else ""
messages.append({"role": msg['role'], "content": content})
elif isinstance(msg, dict) and msg.get('role') == 'tool' and all(k in msg for k in ['tool_call_id', 'name', 'content']):
# Content for tool role must be a string
tool_content = msg['content'] if isinstance(msg['content'], str) else json.dumps(msg['content'])
messages.append({ "role": "tool", "tool_call_id": msg['tool_call_id'], "name": msg['name'], "content": tool_content })
messages.append({"role": "user", "content": user_input})
# --- Initial API Call ---
logger.info(f"Sending {len(messages)} messages to OpenAI model {MODEL_ID}.")
response = client.chat.completions.create(
model=MODEL_ID,
messages=messages,
tools=tools_list, # Provide available tools (excluding job search)
tool_choice="auto",
temperature=0.7,
max_tokens=1500
)
response_message = response.choices[0].message
# --- Log Assistant's Turn (Potentially with Tool Calls) ---
# Store the assistant's message regardless of whether it contains text or tool calls.
# The 'content' might be None/empty if only tool calls are made.
assistant_response_for_db = {
"role": "assistant",
"content": response_message.content, # Store text content (can be None)
# Add tool calls if they exist, for accurate history reconstruction
"tool_calls": [tc.model_dump() for tc in response_message.tool_calls] if response_message.tool_calls else None
}
# Don't save yet, save *after* potential second call
final_response_content = response_message.content # Initial text response
tool_calls = response_message.tool_calls
# --- Tool Call Handling ---
if tool_calls:
logger.info(f"AI requested {len(tool_calls)} tool call(s): {[tc.function.name for tc in tool_calls]}")
# Append the assistant's response message that contains the tool calls to the *local* messages list for the next API call
messages.append(response_message)
available_functions = {
"generate_document_template": generate_document_template,
"create_personalized_routine": create_personalized_routine,
"analyze_resume": analyze_resume,
"analyze_portfolio": analyze_portfolio,
"extract_and_rate_skills_from_resume": extract_and_rate_skills_from_resume,
}
tool_results_for_api = [] # Collect results to append for the next API call
tool_results_for_db = [] # Collect results for database storage
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions.get(function_name)
try:
function_args = json.loads(tool_call.function.arguments)
if function_to_call:
# --- Special Handling & File Saving ---
if function_name == "analyze_resume":
if 'career_goal' not in function_args: function_args['career_goal'] = user_profile.get('career_goal', 'Not specified')
save_user_resume(user_id, function_args.get('resume_text', ''))
if function_name == "analyze_portfolio":
if 'career_goal' not in function_args: function_args['career_goal'] = user_profile.get('career_goal', 'Not specified')
save_user_portfolio(user_id, function_args.get('portfolio_url', ''), function_args.get('portfolio_description', ''))
# --- Call Function ---
logger.info(f"Calling function '{function_name}' with args: {function_args}")
function_response = function_to_call(**function_args) # Response should be JSON string
logger.info(f"Function '{function_name}' returned: {function_response[:200]}...")
tool_result = { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": function_response }
else:
logger.warning(f"Function {function_name} requested by AI but not implemented.")
tool_result = { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": json.dumps({"error": f"Tool '{function_name}' is not available."}) }
except json.JSONDecodeError as e:
logger.error(f"Error decoding arguments for {function_name}: {tool_call.function.arguments} - {e}")
tool_result = { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": json.dumps({"error": f"Invalid arguments provided for tool {function_name}."}) }
except Exception as e:
logger.exception(f"Error executing function {function_name}: {e}")
tool_result = { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": json.dumps({"error": f"Failed to execute tool {function_name}."}) }
# Append result for both next API call and DB storage
messages.append(tool_result) # Append full dict to local messages for API
tool_results_for_db.append(tool_result) # Store for DB
# --- Second API Call (after tool execution) ---
logger.info(f"Sending {len(messages)} messages to OpenAI (including tool results).")
second_response = client.chat.completions.create(
model=MODEL_ID, messages=messages, temperature=0.7, max_tokens=1500
)
final_response_content = second_response.choices[0].message.content
logger.info("Received final response from OpenAI after tool calls.")
# --- Store User Input, Assistant (Tool Call) Message, Tool Results, and Final Assistant Response ---
add_chat_message(user_id, "user", user_input)
# Store the *first* assistant message (which contained the tool call request)
add_chat_message(user_id, "assistant", assistant_response_for_db)
# Store the tool results
for res in tool_results_for_db: add_chat_message(user_id, "tool", res)
# Store the *final* assistant text response
add_chat_message(user_id, "assistant", {"role": "assistant", "content": final_response_content})
else:
# --- No Tool Calls ---
logger.info("No tool calls requested by AI.")
# Store User Input and Assistant Response
add_chat_message(user_id, "user", user_input)
# Ensure the response content is stored correctly (might be None initially)
add_chat_message(user_id, "assistant", {"role": "assistant", "content": final_response_content if final_response_content else ""})
# --- Post-processing and Return ---
if not final_response_content:
final_response_content = "I've processed that. Is there anything else I can help you with?"
logger.warning("AI returned empty content after processing.")
# Optional: Generate recommendations based on the final interaction (can be slow)
if generate_recommendations:
try:
# Consider making this async or optional via UI button
# gen_recommendations_openai(user_id, user_input, final_response_content if final_response_content else "Tool action completed.")
pass # Skipping inline recommendation generation for performance
except Exception as rec_e:
logger.error(f"Error during recommendation generation: {rec_e}")
return final_response_content if final_response_content else "Action completed."
except openai.APIError as e:
logger.error(f"OpenAI API Error: {e.status_code} - {e.response}")
return f"I'm sorry, there was an issue communicating with the AI service (Code: {e.status_code}). Please try again."
except openai.APITimeoutError:
logger.error("OpenAI API request timed out.")
return "I'm sorry, the request to the AI service timed out. Please try again."
except openai.APIConnectionError as e:
logger.error(f"OpenAI Connection Error: {e}")
return "I couldn't connect to the AI service. Please check your network connection."
except openai.RateLimitError:
logger.error("OpenAI Rate Limit Exceeded.")
return "I'm experiencing high demand right now. Please try again in a moment."
except Exception as e:
logger.exception(f"Unexpected error in get_ai_response for user {user_id}: {e}")
return "I apologize, but an unexpected error occurred. Please try restarting the conversation or try again later."
# --- Recommendation Generation (Placeholder - Adapt for OpenAI) ---
def gen_recommendations_openai(user_id, user_input, ai_response):
"""Generate recommendations using OpenAI."""
logger.info(f"Generating recommendations for user {user_id}")
if not client: return []
try:
user_profile = get_user_profile(user_id)
prompt = f"""
Based on the user profile and recent conversation, generate 1-3 specific, actionable recommendations for their next steps. Focus on practical actions.
User Profile: Emotion: {user_profile.get('current_emotion', 'N/A')}, Goal: {user_profile.get('career_goal', 'N/A')}, Location: {user_profile.get('location', 'N/A')}
Recent Interaction: User: {user_input} | AI: {ai_response}
Generate recommendations in this JSON format ONLY (a list of objects):
```json
[
{{"title": "Concise title", "description": "Detailed explanation (2-3 sentences).", "action_type": "skill_building | networking | resume_update | portfolio_review | interview_prep | mindset_shift | other", "priority": "high | medium | low"}}
]
```
"""
response = client.chat.completions.create(
model=MODEL_ID,
messages=[ {"role": "system", "content": "You generate career recommendations in JSON list format."}, {"role": "user", "content": prompt} ],
temperature=0.5, max_tokens=512,
# Attempting JSON mode, but ensure the prompt clearly asks for the list format
# response_format={"type": "json_object"} # This might force an outer object, adjust parsing if used.
)
json_str = response.choices[0].message.content
logger.info(f"Raw recommendations JSON string: {json_str}")
try:
# Clean potential markdown fences
if json_str.startswith("```json"): json_str = json_str.split("```json")[1].split("```")[0].strip()
recommendations = json.loads(json_str)
if not isinstance(recommendations, list): # Handle if AI wraps in an object
if isinstance(recommendations, dict) and len(recommendations) == 1:
key = list(recommendations.keys())[0]
if isinstance(recommendations[key], list):
recommendations = recommendations[key]
else: raise ValueError("JSON is not a list or expected object wrapper.")
else: raise ValueError("JSON is not a list.")
valid_recs_added = 0
for rec in recommendations:
if isinstance(rec, dict) and all(k in rec for k in ['title', 'description', 'action_type', 'priority']):
add_recommendation_to_user(user_id, rec); valid_recs_added += 1
else: logger.warning(f"Skipping invalid recommendation format: {rec}")
logger.info(f"Added {valid_recs_added} recommendations.")
return recommendations
except (json.JSONDecodeError, ValueError) as e:
logger.error(f"Failed to parse JSON recommendations: {e}\nResponse: {json_str}"); return []
except Exception as e: logger.exception(f"Error generating recommendations: {e}"); return []
# --- Chart and Visualization Functions ---
def create_emotion_chart(user_id):
"""Create a chart of user's emotions over time"""
user_profile = get_user_profile(user_id)
emotion_records = user_profile.get('daily_emotions', [])
if not emotion_records:
fig = go.Figure(); fig.add_annotation(text="No emotion data tracked yet.", showarrow=False); fig.update_layout(title="Emotion Tracking"); return fig
emotion_values = {"Unmotivated": 1, "Anxious": 2, "Confused": 3, "Discouraged": 4, "Overwhelmed": 5, "Excited": 6}
dates = [datetime.fromisoformat(record['date']) for record in emotion_records]
emotion_scores = [emotion_values.get(record['emotion'], 3) for record in emotion_records]
emotion_names = [record['emotion'] for record in emotion_records]
df = pd.DataFrame({'Date': dates, 'Emotion Score': emotion_scores, 'Emotion': emotion_names}).sort_values('Date')
fig = px.line(df, x='Date', y='Emotion Score', markers=True, labels={"Emotion Score": "Emotional State"}, title="Your Emotional Journey")
fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Feeling: %{text}', text=df['Emotion'])
fig.update_yaxes(tickvals=list(emotion_values.values()), ticktext=list(emotion_values.keys()))
return fig
def create_progress_chart(user_id):
"""Create a chart showing user's progress points over time"""
user_profile = get_user_profile(user_id)
tasks = user_profile.get('completed_tasks', [])
if not tasks:
fig = go.Figure(); fig.add_annotation(text="No tasks completed yet.", showarrow=False); fig.update_layout(title="Progress Tracking"); return fig
tasks.sort(key=lambda x: datetime.fromisoformat(x['date']))
dates, points_timeline, task_labels, cumulative_points = [], [], [], 0
points_per_task = 20 # Default points if not stored
for task in tasks:
dates.append(datetime.fromisoformat(task['date']))
# Use actual profile points for timeline if available and reliable
# For simplicity, recalculate cumulative based on tasks for chart
cumulative_points += task.get('points', points_per_task) # Use points stored with task if they existed
points_timeline.append(cumulative_points)
task_labels.append(task['task'])
df = pd.DataFrame({'Date': dates, 'Points': points_timeline, 'Task': task_labels})
fig = px.line(df, x='Date', y='Points', markers=True, title="Your Career Journey Progress")
fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Points: %{y}<br>Completed: %{text}', text=df['Task'])
return fig
def create_routine_completion_gauge(user_id):
"""Create a gauge chart showing routine completion percentage"""
user_profile = get_user_profile(user_id)
routines = user_profile.get('routine_history', [])
if not routines:
fig = go.Figure(go.Indicator(mode="gauge", value=0, title={'text': "Routine Completion"}))
fig.add_annotation(text="No active routine.", showarrow=False); return fig
latest_routine = routines[0] # Assuming latest is first
completion = latest_routine.get('completion', 0)
routine_name = latest_routine.get('routine', {}).get('name', 'Current Routine')
fig = go.Figure(go.Indicator(
mode = "gauge+number", value = completion, domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': f"{routine_name} Completion (%)"},
gauge = {'axis': {'range': [0, 100], 'tickwidth': 1, 'tickcolor': "darkblue"},
'bar': {'color': "cornflowerblue"}, 'bgcolor': "white", 'borderwidth': 2, 'bordercolor': "gray",
'steps': [{'range': [0, 50], 'color': 'whitesmoke'}, {'range': [50, 80], 'color': 'lightgray'}],
'threshold': {'line': {'color': "green", 'width': 4}, 'thickness': 0.75, 'value': 90}}))
return fig
def create_skill_radar_chart(user_id):
"""Creates a radar chart of user's skills based on resume analysis."""
logger.info(f"Creating skill radar chart for user {user_id}")
user_profile = get_user_profile(user_id)
resume_path = user_profile.get('resume_path')
if not resume_path or not os.path.exists(resume_path):
logger.warning("No resume path found or file missing for skill chart.")
fig = go.Figure(); fig.add_annotation(text="Upload & Analyze Resume for Skill Chart", showarrow=False); fig.update_layout(title="Skill Assessment"); return fig
try:
with open(resume_path, 'r', encoding='utf-8') as f: resume_text = f.read()
# Use the tool function to extract skills (simulated call here)
skills_json_str = extract_and_rate_skills_from_resume(resume_text=resume_text)
skill_data = json.loads(skills_json_str)
if 'skills' in skill_data and skill_data['skills']:
skills = skill_data['skills'][:8] # Limit skills
categories = [skill['name'] for skill in skills]
values = [skill['score'] for skill in skills]
if len(categories) > 2: categories.append(categories[0]); values.append(values[0]) # Close loop
fig = go.Figure()
fig.add_trace(go.Scatterpolar(r=values, theta=categories, fill='toself', name='Skills'))
fig.update_layout(polar=dict(radialaxis=dict(visible=True, range=[0, 10])), showlegend=False, title="Skill Assessment (Based on Resume)")
logger.info(f"Successfully created radar chart with {len(skills)} skills.")
return fig
else:
logger.warning("Could not extract skills from resume for chart.")
fig = go.Figure(); fig.add_annotation(text="Could not extract skills from resume", showarrow=False); fig.update_layout(title="Skill Assessment"); return fig
except Exception as e:
logger.exception(f"Error creating skill radar chart: {e}")
fig = go.Figure(); fig.add_annotation(text="Error analyzing skills", showarrow=False); fig.update_layout(title="Skill Assessment"); return fig
# --- Gradio Interface Components ---
def create_interface():
"""Create the Gradio interface for Aishura"""
session_user_id = str(uuid.uuid4())
logger.info(f"Initializing Gradio interface for session user ID: {session_user_id}")
get_user_profile(session_user_id) # Initialize profile
# --- Event Handlers ---
def welcome(name, location, emotion, goal):
"""Handles welcome screen submission."""
logger.info(f"Welcome action: name='{name}', loc='{location}', emo='{emotion}', goal='{goal}'")
if not all([name, location, emotion, goal]):
return ("Please fill out all fields.", gr.update(visible=True), gr.update(visible=False)) # Keep welcome visible
# Clean goal string if it includes emoji
cleaned_goal = goal.rsplit(" ", 1)[0] if goal[-1].isnumeric() == False and goal[-2] == " " else goal # Basic emoji removal
update_user_profile(session_user_id, {"name": name, "location": location, "career_goal": cleaned_goal}) # Store cleaned goal
add_emotion_record(session_user_id, emotion)
initial_input = f"Hi Aishura! I'm {name} from {location}. I'm feeling {emotion}, and my main goal is '{cleaned_goal}'. Can you help me get started?"
ai_response = get_ai_response(session_user_id, initial_input, generate_recommendations=True)
initial_chat = [{"role":"user", "content": initial_input}, {"role":"assistant", "content": ai_response}] # Use messages format
# Fetch initial charts
emotion_fig = create_emotion_chart(session_user_id)
progress_fig = create_progress_chart(session_user_id)
routine_fig = create_routine_completion_gauge(session_user_id)
skill_fig = create_skill_radar_chart(session_user_id)
# Return updates: chatbot history, visibility, and chart values
return (gr.update(value=initial_chat), # Chatbot expects list of dicts
gr.update(visible=False), gr.update(visible=True), # Show/hide groups
gr.update(value=emotion_fig), gr.update(value=progress_fig), # Update plots with value=figure
gr.update(value=routine_fig), gr.update(value=skill_fig))
def chat_submit(message_text, history_list_dicts):
"""Handles sending a message in the chatbot (using messages format)."""
logger.info(f"Chat submit: '{message_text[:50]}...'")
if not message_text: return history_list_dicts, "", gr.update() # Return current history if empty input
# Append user message to the history list
history_list_dicts.append({"role": "user", "content": message_text})
# Get AI response (which also saves interaction to DB)
ai_response_text = get_ai_response(session_user_id, message_text, generate_recommendations=True)
# Append AI response to the history list
history_list_dicts.append({"role": "assistant", "content": ai_response_text})
# Update recommendations display
recommendations_md = display_recommendations(session_user_id)
# Return updated history list, clear input box, update recommendations display
return history_list_dicts, "", gr.update(value=recommendations_md)
# --- Tool Interface Handlers ---
# Removed search_jobs_interface_handler
def generate_template_interface_handler(doc_type, career_field, experience):
logger.info(f"Manual Template UI: type='{doc_type}', field='{career_field}', exp='{experience}'")
template_json_str = generate_document_template(doc_type, career_field, experience)
try:
template_data = json.loads(template_json_str); return template_data.get('template_markdown', "Error.")
except: return "Error displaying template."
def create_routine_interface_handler(emotion, goal, time_available, days):
logger.info(f"Manual Routine UI: emo='{emotion}', goal='{goal}', time='{time_available}', days='{days}'")
# Clean emotion string
cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion
routine_json_str = create_personalized_routine(cleaned_emotion, goal, int(time_available), int(days))
try:
routine_data = json.loads(routine_json_str)
if "error" in routine_data: return f"Error: {routine_data['error']}", gr.update()
add_routine_to_user(session_user_id, routine_data) # Save routine
output_md = f"# Your {routine_data.get('name', 'Personalized Routine')}\n\n{routine_data.get('description', '')}\n\n"
for day_plan in routine_data.get('daily_tasks', []):
output_md += f"## Day {day_plan.get('day', '?')}\n"
tasks = day_plan.get('tasks', [])
if not tasks: output_md += "- Rest day or free choice.\n"
else:
for task in tasks:
output_md += f"- **{task.get('name', 'Task')}** ({task.get('duration', '?')} mins)\n *Why: {task.get('description', '...') }*\n" # Simplified display
output_md += "\n"
gauge_fig = create_routine_completion_gauge(session_user_id)
return output_md, gr.update(value=gauge_fig)
except: return "Error displaying routine.", gr.update()
def analyze_resume_interface_handler(resume_text):
logger.info(f"Manual Resume Analysis UI: length={len(resume_text)}")
if not resume_text: return "Please paste your resume text.", gr.update(value=None)
user_profile = get_user_profile(session_user_id)
career_goal = user_profile.get('career_goal', 'Not specified')
save_user_resume(session_user_id, resume_text) # Save first
analysis_json_str = analyze_resume(resume_text, career_goal) # Call tool (placeholder analysis)
try:
analysis_data = json.loads(analysis_json_str).get('analysis', {})
output_md = "## Resume Analysis Results (Simulated)\n\n" # Indicate simulation
output_md += f"**Analysis vs Goal:** '{career_goal}'\n\n"
output_md += "**Strengths:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('strengths', [])]) + "\n\n"
output_md += "**Areas for Improvement:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('areas_for_improvement', [])]) + "\n\n"
output_md += f"**Format Feedback:** {analysis_data.get('format_feedback', 'N/A')}\n"
output_md += f"**Content Feedback:** {analysis_data.get('content_feedback', 'N/A')}\n"
output_md += f"**Keyword Suggestions:** {', '.join(analysis_data.get('keyword_suggestions', []))}\n\n"
output_md += "**Next Steps:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('next_steps', [])])
skill_fig = create_skill_radar_chart(session_user_id) # Update skill chart
return output_md, gr.update(value=skill_fig)
except: return "Error displaying analysis.", gr.update(value=None)
def analyze_portfolio_interface_handler(portfolio_url, portfolio_description):
logger.info(f"Manual Portfolio Analysis UI: url='{portfolio_url}', desc_len={len(portfolio_description)}")
if not portfolio_description: return "Please provide a description."
user_profile = get_user_profile(session_user_id)
career_goal = user_profile.get('career_goal', 'Not specified')
save_user_portfolio(session_user_id, portfolio_url, portfolio_description) # Save first
analysis_json_str = analyze_portfolio(portfolio_description, career_goal, portfolio_url) # Call tool (placeholder analysis)
try:
analysis_data = json.loads(analysis_json_str).get('analysis', {})
output_md = "## Portfolio Analysis Results (Simulated)\n\n" # Indicate simulation
output_md += f"**Analysis vs Goal:** '{career_goal}'\n"
if portfolio_url: output_md += f"**URL:** {portfolio_url}\n\n"
output_md += f"**Alignment:** {analysis_data.get('alignment_with_goal', 'N/A')}\n\n"
output_md += "**Strengths:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('strengths', [])]) + "\n\n"
output_md += "**Areas for Improvement:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('areas_for_improvement', [])]) + "\n\n"
output_md += f"**Presentation Feedback:** {analysis_data.get('presentation_feedback', 'N/A')}\n\n"
output_md += "**Next Steps:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('next_steps', [])])
return output_md
except: return "Error displaying analysis."
# --- Progress Tracking Handlers ---
def complete_task_handler(task_name):
logger.info(f"Complete Task UI: task='{task_name}'")
if not task_name: return ("Enter task name.", "", gr.update(), gr.update(), gr.update())
add_task_to_user(session_user_id, task_name)
# Update completion % of latest routine
db = load_user_database(); profile = db.get('users', {}).get(session_user_id)
if profile and profile.get('routine_history'):
latest_routine_entry = profile['routine_history'][0]
increment = random.randint(5, 15) # Simple increment
new_completion = min(100, latest_routine_entry.get('completion', 0) + increment)
latest_routine_entry['completion'] = new_completion; save_user_database(db)
# Refresh charts
emotion_fig = create_emotion_chart(session_user_id)
progress_fig = create_progress_chart(session_user_id)
gauge_fig = create_routine_completion_gauge(session_user_id)
return (f"Great job on '{task_name}'!", "", gr.update(value=emotion_fig), gr.update(value=progress_fig), gr.update(value=gauge_fig))
def update_emotion_handler(emotion):
logger.info(f"Update Emotion UI: emotion='{emotion}'")
if not emotion: return "Please select an emotion.", gr.update()
add_emotion_record(session_user_id, emotion)
emotion_fig = create_emotion_chart(session_user_id)
# Clean emotion for display message
cleaned_emotion_display = emotion.split(" ")[0] if " " in emotion else emotion
return f"Emotion updated to '{cleaned_emotion_display}'.", gr.update(value=emotion_fig)
def display_recommendations(current_user_id):
"""Fetches and formats recommendations."""
logger.info(f"Displaying recommendations for user {current_user_id}")
user_profile = get_user_profile(current_user_id)
recommendations = user_profile.get('recommendations', [])
if not recommendations: return "Chat with Aishura to get recommendations!"
recent_recs = recommendations[:5] # Latest 5
output_md = "# Your Latest Recommendations\n\n"
if not recent_recs: return output_md + "No recommendations yet."
for i, rec_entry in enumerate(recent_recs, 1):
rec = rec_entry.get('recommendation', {})
output_md += f"### {i}. {rec.get('title', 'N/A')}\n"
output_md += f"{rec.get('description', 'N/A')}\n"
output_md += f"**Priority:** {rec.get('priority', 'N/A').title()} | **Type:** {rec.get('action_type', 'N/A').replace('_', ' ').title()}\n---\n"
return output_md
# --- Build Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky")) as app:
gr.Markdown("# Aishura - Your AI Career Assistant")
# --- Welcome Screen ---
with gr.Group(visible=True) as welcome_group:
gr.Markdown("## Welcome to Aishura!")
gr.Markdown("Let's get acquainted. Tell me a bit about yourself.")
with gr.Row():
with gr.Column():
name_input = gr.Textbox(label="Your Name", placeholder="e.g., Alex Chen")
location_input = gr.Textbox(label="Your Location", placeholder="e.g., London, UK")
with gr.Column():
# Updated label and choices
emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling today?")
goal_dropdown = gr.Dropdown(choices=GOAL_TYPES, label="What's your main goal?") # Changed Label
welcome_button = gr.Button("Start My Journey")
welcome_output = gr.Markdown()
# --- Main App Interface ---
with gr.Group(visible=False) as main_interface:
with gr.Tabs() as tabs:
# --- Chat Tab ---
with gr.TabItem("πŸ’¬ Chat"):
with gr.Row():
with gr.Column(scale=3):
# Corrected Chatbot initialization
chatbot = gr.Chatbot(
label="Aishura Assistant", height=550, type="messages", # Added type='messages'
avatar_images=("./user_avatar.png", "./aishura_avatar.png"),
show_copy_button=True
# Removed bubble_full_width
)
emotion_message_area = gr.Markdown("", visible=False, elem_classes="subtle-message")
msg_textbox = gr.Textbox(show_label=False, placeholder="Type your message...", container=False, scale=1)
with gr.Column(scale=1):
gr.Markdown("### ✨ Recommendations")
recommendation_output = gr.Markdown(value="Chat for recommendations.")
refresh_recs_button = gr.Button("πŸ”„ Refresh Recommendations")
# --- Analysis Tab ---
with gr.TabItem("πŸ“Š Analysis"):
with gr.Tabs() as analysis_subtabs:
with gr.TabItem("πŸ“„ Resume"):
gr.Markdown("### Resume Analysis")
gr.Markdown("Paste resume below for analysis against your goals.")
resume_text_input = gr.Textbox(label="Paste Resume Text Here", lines=15)
analyze_resume_button = gr.Button("Analyze My Resume")
resume_analysis_output = gr.Markdown()
with gr.TabItem("🎨 Portfolio"):
gr.Markdown("### Portfolio Analysis")
gr.Markdown("Provide link/description.")
portfolio_url_input = gr.Textbox(label="Portfolio URL (Optional)")
portfolio_desc_input = gr.Textbox(label="Portfolio Description", lines=5)
analyze_portfolio_button = gr.Button("Analyze My Portfolio")
portfolio_analysis_output = gr.Markdown()
with gr.TabItem("πŸ’‘ Skills"):
gr.Markdown("### Skill Assessment")
gr.Markdown("Visualize skills from resume analysis.")
skill_radar_chart_output = gr.Plot(label="Skill Radar Chart") # Corrected: Plot init
# --- Tools Tab (Removed Job Search) ---
with gr.TabItem("πŸ› οΈ Tools"):
with gr.Tabs() as tools_subtabs:
# Removed Job Search TabItem
with gr.TabItem("πŸ“ Templates"):
gr.Markdown("### Generate Document Templates")
gr.Markdown("Get started with career documents.")
doc_type_dropdown = gr.Dropdown(choices=["Resume", "Cover Letter", "LinkedIn Summary", "Networking Email"], label="Select Document Type")
doc_field_input = gr.Textbox(label="Career Field (Optional)")
doc_exp_dropdown = gr.Dropdown(choices=["Entry-Level", "Mid-Career", "Senior-Level", "Student/Intern"], label="Experience Level")
generate_template_button = gr.Button("Generate Template")
template_output_md = gr.Markdown()
with gr.TabItem("πŸ“… Routine"):
gr.Markdown("### Create a Personalized Routine")
gr.Markdown("Develop a plan tailored to your goals and feelings.")
routine_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling?")
routine_goal_input = gr.Textbox(label="Specific Goal", placeholder="e.g., Apply to 5 jobs")
routine_time_slider = gr.Slider(minimum=15, maximum=120, value=45, step=15, label="Minutes/Day")
routine_days_slider = gr.Slider(minimum=3, maximum=21, value=7, step=1, label="Routine Length (Days)")
create_routine_button = gr.Button("Create My Routine")
routine_output_md = gr.Markdown()
# --- Progress Tab ---
with gr.TabItem("πŸ“ˆ Progress"):
gr.Markdown("## Track Your Journey")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Mark Task Complete"); task_input = gr.Textbox(label="Task Name"); complete_button = gr.Button("Complete Task"); task_output = gr.Markdown()
gr.Markdown("---"); gr.Markdown("### Update Emotion"); new_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling now?"); emotion_button = gr.Button("Update Feeling"); emotion_output = gr.Markdown()
with gr.Column(scale=2):
gr.Markdown("### Visualizations")
with gr.Row(): emotion_chart_output = gr.Plot(label="Emotional Journey") # Corrected: Plot init
with gr.Row(): progress_chart_output = gr.Plot(label="Progress Points") # Corrected: Plot init
with gr.Row(): routine_gauge_output = gr.Plot(label="Routine Completion") # Corrected: Plot init
# --- Event Wiring ---
welcome_button.click(
fn=welcome, inputs=[name_input, location_input, emotion_dropdown, goal_dropdown],
outputs=[chatbot, welcome_group, main_interface, emotion_chart_output, progress_chart_output, routine_gauge_output, skill_radar_chart_output]
)
msg_textbox.submit( fn=chat_submit, inputs=[msg_textbox, chatbot], outputs=[chatbot, msg_textbox, recommendation_output] )
refresh_recs_button.click( fn=lambda: display_recommendations(session_user_id), outputs=[recommendation_output] )
# Analysis
analyze_resume_button.click( fn=analyze_resume_interface_handler, inputs=[resume_text_input], outputs=[resume_analysis_output, skill_radar_chart_output] )
analyze_portfolio_button.click( fn=analyze_portfolio_interface_handler, inputs=[portfolio_url_input, portfolio_desc_input], outputs=[portfolio_analysis_output] )
# Tools
generate_template_button.click( fn=generate_template_interface_handler, inputs=[doc_type_dropdown, doc_field_input, doc_exp_dropdown], outputs=[template_output_md] )
create_routine_button.click( fn=create_routine_interface_handler, inputs=[routine_emotion_dropdown, routine_goal_input, routine_time_slider, routine_days_slider], outputs=[routine_output_md, routine_gauge_output] )
# Progress
complete_button.click( fn=complete_task_handler, inputs=[task_input], outputs=[task_output, task_input, emotion_chart_output, progress_chart_output, routine_gauge_output] )
emotion_button.click( fn=update_emotion_handler, inputs=[new_emotion_dropdown], outputs=[emotion_output, emotion_chart_output] )
return app
# --- Main Execution ---
if __name__ == "__main__":
if not OPENAI_API_KEY:
print("\n" + "*"*60)
print(" Warning: OPENAI_API_KEY environment variable not found. ")
print(" AI features require a valid OpenAI API key. ")
print(" Create a '.env' file with: OPENAI_API_KEY=your_openai_key ")
print("*"*60 + "\n")
# Decide whether to exit or continue with limited functionality
# exit(1)
logger.info("Starting Aishura Gradio application...")
aishura_app = create_interface()
aishura_app.launch(share=False) # Set share=True for public link if needed
logger.info("Aishura Gradio application stopped.")