|
|
|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
|
|
import plotly.graph_objects as go |
|
import plotly.express as px |
|
from datetime import datetime, timedelta |
|
import random |
|
import json |
|
import os |
|
import time |
|
import requests |
|
from typing import List, Dict, Any, Optional |
|
import logging |
|
from dotenv import load_dotenv |
|
|
|
import uuid |
|
import re |
|
|
|
|
|
|
|
|
|
|
|
import openai |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, |
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
if not OPENAI_API_KEY: |
|
logger.warning("OPENAI_API_KEY not found. AI features will not work.") |
|
|
|
|
|
|
|
|
|
try: |
|
client = openai.OpenAI(api_key=OPENAI_API_KEY) |
|
logger.info("OpenAI client initialized successfully.") |
|
except Exception as e: |
|
logger.error(f"Failed to initialize OpenAI client: {e}") |
|
client = None |
|
|
|
|
|
MODEL_ID = "gpt-4o" |
|
|
|
|
|
EMOTIONS = ["Unmotivated π©", "Anxious π₯", "Confused π€", "Excited π", "Overwhelmed π€―", "Discouraged π"] |
|
|
|
GOAL_TYPES = [ |
|
"Get a job at a big company π’", |
|
"Find an internship π", |
|
"Change careers π", |
|
"Improve skills π‘", |
|
"Network better π€" |
|
] |
|
USER_DB_PATH = "user_database.json" |
|
RESUME_FOLDER = "user_resumes" |
|
PORTFOLIO_FOLDER = "user_portfolios" |
|
|
|
|
|
os.makedirs(RESUME_FOLDER, exist_ok=True) |
|
os.makedirs(PORTFOLIO_FOLDER, exist_ok=True) |
|
|
|
|
|
tools_list = [ |
|
|
|
|
|
|
|
|
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "generate_document_template", |
|
"description": "Generate a document template (like a resume or cover letter) based on type, career field, and experience level.", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"document_type": { |
|
"type": "string", |
|
"description": "Type of document (e.g., Resume, Cover Letter, Self-introduction).", |
|
}, |
|
"career_field": { |
|
"type": "string", |
|
"description": "The career field or industry.", |
|
}, |
|
"experience_level": { |
|
"type": "string", |
|
"description": "User's experience level (e.g., Entry, Mid, Senior).", |
|
}, |
|
}, |
|
"required": ["document_type"], |
|
}, |
|
} |
|
}, |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "create_personalized_routine", |
|
"description": "Create a personalized daily or weekly career development routine based on the user's current emotion, goals, and available time.", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"emotion": { |
|
"type": "string", |
|
"description": "User's current primary emotional state (e.g., Unmotivated, Anxious). Needs to be one of the predefined emotions.", |
|
}, |
|
"goal": { |
|
"type": "string", |
|
"description": "User's specific career goal for this routine.", |
|
}, |
|
"available_time_minutes": { |
|
"type": "integer", |
|
"description": "Available time in minutes per day (default 60).", |
|
}, |
|
"routine_length_days": { |
|
"type": "integer", |
|
"description": "Length of the routine in days (default 7).", |
|
}, |
|
}, |
|
"required": ["emotion", "goal"], |
|
}, |
|
} |
|
}, |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "analyze_resume", |
|
"description": "Analyze the provided resume text and provide feedback, comparing it against the user's stated career goal.", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"resume_text": { |
|
"type": "string", |
|
"description": "The full text of the user's resume.", |
|
}, |
|
"career_goal": { |
|
"type": "string", |
|
"description": "The user's career goal or target job/industry to analyze against.", |
|
}, |
|
}, |
|
"required": ["resume_text", "career_goal"], |
|
}, |
|
} |
|
}, |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "analyze_portfolio", |
|
"description": "Analyze a user's portfolio based on a URL (if provided) and a description, offering feedback relative to their career goal.", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"portfolio_url": { |
|
"type": "string", |
|
"description": "URL to the user's online portfolio (optional).", |
|
}, |
|
"portfolio_description": { |
|
"type": "string", |
|
"description": "Detailed description of the portfolio's content, purpose, and structure.", |
|
}, |
|
"career_goal": { |
|
"type": "string", |
|
"description": "The user's career goal or target job/industry to analyze against.", |
|
}, |
|
}, |
|
"required": ["portfolio_description", "career_goal"], |
|
}, |
|
} |
|
}, |
|
{ |
|
"type": "function", |
|
"function": { |
|
"name": "extract_and_rate_skills_from_resume", |
|
"description": "Extracts key skills from resume text and rates them on a scale of 1-10 based on apparent proficiency shown in the resume.", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"resume_text": { |
|
"type": "string", |
|
"description": "The full text of the user's resume.", |
|
}, |
|
"max_skills": { |
|
"type": "integer", |
|
"description": "Maximum number of skills to extract (default 8).", |
|
}, |
|
}, |
|
"required": ["resume_text"], |
|
}, |
|
} |
|
} |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_user_database(): |
|
"""Load user database from JSON file or create if it doesn't exist""" |
|
try: |
|
|
|
with open(USER_DB_PATH, 'r', encoding='utf-8') as file: |
|
db = json.load(file) |
|
|
|
for user_id in db.get('users', {}): |
|
profile = db['users'][user_id] |
|
if 'chat_history' not in profile or not isinstance(profile['chat_history'], list): |
|
profile['chat_history'] = [] |
|
else: |
|
fixed_history = [] |
|
for msg in profile['chat_history']: |
|
if isinstance(msg, dict) and 'role' in msg and 'content' in msg: |
|
|
|
if msg['role'] in ['user', 'assistant'] and msg['content'] is not None and not isinstance(msg['content'], str): |
|
msg['content'] = str(msg['content']) |
|
fixed_history.append(msg) |
|
elif isinstance(msg, dict) and msg.get('role') == 'tool' and all(k in msg for k in ['tool_call_id', 'name', 'content']): |
|
|
|
if not isinstance(msg['content'], str): |
|
msg['content'] = json.dumps(msg['content']) if msg['content'] is not None else "" |
|
fixed_history.append(msg) |
|
else: |
|
|
|
if isinstance(msg, dict) and 'message' in msg and 'role' in msg: |
|
msg['content'] = str(msg.pop('message')) |
|
fixed_history.append(msg) |
|
else: |
|
logger.warning(f"Skipping invalid chat message structure for user {user_id}: {msg}") |
|
profile['chat_history'] = fixed_history |
|
|
|
|
|
if 'recommendations' not in profile or not isinstance(profile['recommendations'], list): |
|
profile['recommendations'] = [] |
|
|
|
return db |
|
except (FileNotFoundError, json.JSONDecodeError): |
|
logger.info(f"Database file '{USER_DB_PATH}' not found or invalid. Creating new one.") |
|
db = {'users': {}} |
|
save_user_database(db) |
|
return db |
|
except Exception as e: |
|
logger.error(f"Error loading user database from {USER_DB_PATH}: {e}") |
|
return {'users': {}} |
|
|
|
def save_user_database(db): |
|
"""Save user database to JSON file""" |
|
try: |
|
with open(USER_DB_PATH, 'w', encoding='utf-8') as file: |
|
json.dump(db, file, indent=4, ensure_ascii=False) |
|
except Exception as e: |
|
logger.error(f"Error saving user database to {USER_DB_PATH}: {e}") |
|
|
|
def get_user_profile(user_id): |
|
"""Get user profile from database or create new one""" |
|
db = load_user_database() |
|
if user_id not in db.get('users', {}): |
|
db['users'] = db.get('users', {}) |
|
db['users'][user_id] = { |
|
"user_id": user_id, |
|
"name": "", |
|
"location": "", |
|
"current_emotion": "", |
|
"career_goal": "", |
|
"progress_points": 0, |
|
"completed_tasks": [], |
|
"upcoming_events": [], |
|
"routine_history": [], |
|
"daily_emotions": [], |
|
"resume_path": "", |
|
"portfolio_path": "", |
|
"recommendations": [], |
|
"chat_history": [], |
|
"joined_date": datetime.now().isoformat() |
|
} |
|
save_user_database(db) |
|
|
|
profile = db.get('users', {}).get(user_id, {}) |
|
if 'chat_history' not in profile or not isinstance(profile.get('chat_history'), list): |
|
profile['chat_history'] = [] |
|
|
|
if 'recommendations' not in profile or not isinstance(profile.get('recommendations'), list): |
|
profile['recommendations'] = [] |
|
if 'daily_emotions' not in profile or not isinstance(profile.get('daily_emotions'), list): |
|
profile['daily_emotions'] = [] |
|
if 'completed_tasks' not in profile or not isinstance(profile.get('completed_tasks'), list): |
|
profile['completed_tasks'] = [] |
|
if 'routine_history' not in profile or not isinstance(profile.get('routine_history'), list): |
|
profile['routine_history'] = [] |
|
|
|
|
|
return profile |
|
|
|
def update_user_profile(user_id, updates): |
|
"""Update user profile with new information""" |
|
db = load_user_database() |
|
if user_id in db.get('users', {}): |
|
profile = db['users'][user_id] |
|
for key, value in updates.items(): |
|
profile[key] = value |
|
save_user_database(db) |
|
return profile |
|
else: |
|
logger.warning(f"Attempted to update non-existent user profile: {user_id}") |
|
return None |
|
|
|
def add_task_to_user(user_id, task): |
|
"""Add a new task to user's completed tasks""" |
|
db = load_user_database() |
|
profile = db.get('users', {}).get(user_id) |
|
if profile: |
|
if 'completed_tasks' not in profile or not isinstance(profile['completed_tasks'], list): |
|
profile['completed_tasks'] = [] |
|
|
|
task_with_date = { |
|
"task": task, |
|
"date": datetime.now().isoformat() |
|
} |
|
profile['completed_tasks'].append(task_with_date) |
|
profile['progress_points'] = profile.get('progress_points', 0) + random.randint(10, 25) |
|
save_user_database(db) |
|
return profile |
|
return None |
|
|
|
def add_emotion_record(user_id, emotion): |
|
"""Add a new emotion record to user's daily emotions""" |
|
cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion |
|
db = load_user_database() |
|
profile = db.get('users', {}).get(user_id) |
|
if profile: |
|
if 'daily_emotions' not in profile or not isinstance(profile['daily_emotions'], list): |
|
profile['daily_emotions'] = [] |
|
|
|
emotion_record = { |
|
"emotion": cleaned_emotion, |
|
"date": datetime.now().isoformat() |
|
} |
|
profile['daily_emotions'].append(emotion_record) |
|
profile['current_emotion'] = cleaned_emotion |
|
save_user_database(db) |
|
return profile |
|
return None |
|
|
|
def add_routine_to_user(user_id, routine): |
|
"""Add a new routine to user's routine history""" |
|
db = load_user_database() |
|
profile = db.get('users', {}).get(user_id) |
|
if profile: |
|
if 'routine_history' not in profile or not isinstance(profile['routine_history'], list): |
|
profile['routine_history'] = [] |
|
try: |
|
days_delta = int(routine.get('days', 7)) |
|
except (ValueError, TypeError): days_delta = 7 |
|
end_date = (datetime.now() + timedelta(days=days_delta)).isoformat() |
|
routine_with_date = { |
|
"routine": routine, |
|
"start_date": datetime.now().isoformat(), |
|
"end_date": end_date, "completion": 0 |
|
} |
|
profile['routine_history'].insert(0, routine_with_date) |
|
profile['routine_history'] = profile['routine_history'][:10] |
|
save_user_database(db) |
|
return profile |
|
return None |
|
|
|
def save_user_resume(user_id, resume_text): |
|
"""Save user's resume text to file and update profile path.""" |
|
if not resume_text: return None |
|
filename = f"{user_id}_resume.txt" |
|
filepath = os.path.join(RESUME_FOLDER, filename) |
|
try: |
|
with open(filepath, 'w', encoding='utf-8') as file: file.write(resume_text) |
|
update_user_profile(user_id, {"resume_path": filepath}) |
|
logger.info(f"Resume saved for user {user_id} at {filepath}") |
|
return filepath |
|
except Exception as e: |
|
logger.error(f"Error saving resume for user {user_id}: {e}") |
|
return None |
|
|
|
def save_user_portfolio(user_id, portfolio_url, portfolio_description): |
|
"""Save user's portfolio info (URL and description) to file.""" |
|
if not portfolio_description: return None |
|
filename = f"{user_id}_portfolio.json" |
|
filepath = os.path.join(PORTFOLIO_FOLDER, filename) |
|
portfolio_content = {"url": portfolio_url, "description": portfolio_description, "saved_date": datetime.now().isoformat()} |
|
try: |
|
with open(filepath, 'w', encoding='utf-8') as file: json.dump(portfolio_content, file, indent=4, ensure_ascii=False) |
|
update_user_profile(user_id, {"portfolio_path": filepath}) |
|
logger.info(f"Portfolio info saved for user {user_id} at {filepath}") |
|
return filepath |
|
except Exception as e: |
|
logger.error(f"Error saving portfolio info for user {user_id}: {e}") |
|
return None |
|
|
|
def add_recommendation_to_user(user_id, recommendation): |
|
"""Add a new recommendation object to user's list""" |
|
db = load_user_database() |
|
profile = db.get('users', {}).get(user_id) |
|
if profile: |
|
if 'recommendations' not in profile or not isinstance(profile['recommendations'], list): profile['recommendations'] = [] |
|
recommendation_with_date = {"recommendation": recommendation, "date": datetime.now().isoformat(), "status": "pending"} |
|
profile['recommendations'].insert(0, recommendation_with_date) |
|
profile['recommendations'] = profile['recommendations'][:20] |
|
save_user_database(db) |
|
return profile |
|
return None |
|
|
|
def add_chat_message(user_id, role, content): |
|
"""Add a message to the user's chat history using OpenAI format.""" |
|
db = load_user_database() |
|
profile = db.get('users', {}).get(user_id) |
|
if profile: |
|
if 'chat_history' not in profile or not isinstance(profile['chat_history'], list): profile['chat_history'] = [] |
|
if role not in ['user', 'assistant', 'system', 'tool']: |
|
logger.warning(f"Invalid role '{role}' provided for chat message."); return profile |
|
|
|
if role == 'tool' and content is not None and not isinstance(content, str): |
|
content = json.dumps(content) |
|
elif role == 'assistant' and content is None: |
|
content = "" |
|
elif not content and role == 'user': |
|
logger.warning(f"Empty content provided for chat role 'user'. Skipping save."); |
|
|
|
chat_message = {"role": role, "content": content, "timestamp": datetime.now().isoformat()} |
|
profile['chat_history'].append(chat_message) |
|
|
|
max_history = 50 |
|
if len(profile['chat_history']) > max_history: |
|
system_msgs = [m for m in profile['chat_history'] if m['role'] == 'system'] |
|
other_msgs = [m for m in profile['chat_history'] if m['role'] != 'system'] |
|
profile['chat_history'] = system_msgs + other_msgs[-max_history:] |
|
save_user_database(db) |
|
return profile |
|
return None |
|
|
|
|
|
|
|
def generate_basic_routine(emotion, goal, available_time=60, days=7): |
|
"""Generate a basic routine as fallback.""" |
|
logger.info(f"Generating basic fallback routine for emotion={emotion}, goal={goal}") |
|
routine_types = { |
|
"job_search": [ |
|
{"name": "Research Target Companies", "points": 15, "duration": 20, "description": "Identify 3 potential employers aligned with your goal."}, |
|
{"name": "Update LinkedIn Section", "points": 15, "duration": 25, "description": "Refine one section of your LinkedIn profile (e.g., summary, experience)."}, |
|
{"name": "Practice STAR Method", "points": 20, "duration": 15, "description": "Outline one experience using the STAR method for interviews."}, |
|
{"name": "Find Networking Event", "points": 10, "duration": 10, "description": "Look for one relevant online or local networking event."} |
|
], |
|
"skill_building": [ |
|
{"name": "Online Tutorial (1 Module)", "points": 25, "duration": 45, "description": "Complete one module of a relevant online course/tutorial."}, |
|
{"name": "Read Industry Blog/Article", "points": 10, "duration": 15, "description": "Read and summarize one article about trends in your field."}, |
|
{"name": "Small Project Task", "points": 30, "duration": 60, "description": "Dedicate time to a specific task within a personal project."}, |
|
{"name": "Review Skill Documentation", "points": 15, "duration": 30, "description": "Read documentation or examples for a skill you're learning."} |
|
], |
|
"motivation_wellbeing": [ |
|
{"name": "Mindful Reflection", "points": 10, "duration": 10, "description": "Spend 10 minutes reflecting on progress and challenges without judgment."}, |
|
{"name": "Set 1-3 Daily Intentions", "points": 10, "duration": 5, "description": "Define small, achievable goals for the day."}, |
|
{"name": "Short Break/Walk", "points": 15, "duration": 15, "description": "Take a brief break away from screens, preferably with light movement."}, |
|
{"name": "Connect with Support", "points": 20, "duration": 20, "description": "Briefly chat with a friend, mentor, or peer about your journey."} |
|
] |
|
} |
|
cleaned_emotion = emotion.split(" ")[0].lower() if " " in emotion else emotion.lower() |
|
negative_emotions = ["unmotivated", "anxious", "confused", "overwhelmed", "discouraged"] |
|
if "job" in goal.lower() or "internship" in goal.lower() or "company" in goal.lower(): base_type = "job_search" |
|
elif "skill" in goal.lower() or "learn" in goal.lower(): base_type = "skill_building" |
|
elif "network" in goal.lower(): base_type = "job_search" |
|
else: base_type = "skill_building" |
|
include_wellbeing = cleaned_emotion in negative_emotions |
|
daily_tasks_list = [] |
|
for day in range(1, days + 1): |
|
day_tasks, remaining_time, tasks_added_count = [], available_time, 0 |
|
possible_tasks = routine_types[base_type].copy() |
|
if include_wellbeing: possible_tasks.extend(routine_types["motivation_wellbeing"]) |
|
random.shuffle(possible_tasks) |
|
for task in possible_tasks: |
|
if task["duration"] <= remaining_time and tasks_added_count < 3: |
|
day_tasks.append(task); remaining_time -= task["duration"]; tasks_added_count += 1 |
|
if remaining_time < 10 or tasks_added_count >= 3: break |
|
daily_tasks_list.append({"day": day, "tasks": day_tasks}) |
|
routine = {"name": f"{days}-Day Focus Plan", "description": f"A basic {days}-day plan focusing on '{goal}' while acknowledging feeling {cleaned_emotion}.", "days": days, "daily_tasks": daily_tasks_list} |
|
return routine |
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_document_template(document_type: str, career_field: str = "", experience_level: str = "") -> str: |
|
"""Generates a basic markdown template for the specified document type.""" |
|
logger.info(f"Executing tool: generate_document_template(document_type='{document_type}', career_field='{career_field}', experience_level='{experience_level}')") |
|
template = f"## Basic Template: {document_type}\n\n" |
|
template += f"**Target Field:** {career_field or 'Not specified'}\n" |
|
template += f"**Experience Level:** {experience_level or 'Not specified'}\n\n---\n\n" |
|
if "resume" in document_type.lower(): |
|
template += ("### Contact Information\n- Name:\n- Phone:\n- Email:\n- LinkedIn URL:\n- Portfolio URL (Optional):\n\n" |
|
"### Summary/Objective\n_[ 2-3 sentences summarizing your key skills, experience, and career goals, tailored to the job/field. ]_\n\n" |
|
"### Experience\n**Company Name** | Location | Job Title | _Start Date β End Date_\n- Accomplishment 1 (Use action verbs and quantify results, e.g., 'Increased sales by 15%...')\n- Accomplishment 2\n\n_[ Repeat for other relevant positions ]_\n\n" |
|
"### Education\n**University/Institution Name** | Degree | _Graduation Date (or Expected)_\n- Relevant coursework, honors, activities (Optional)\n\n" |
|
"### Skills\n- **Technical Skills:** [ e.g., Python, Java, SQL, MS Excel, Google Analytics ]\n- **Languages:** [ e.g., English (Native), Spanish (Fluent) ]\n- **Other:** [ Certifications, relevant tools ]\n") |
|
elif "cover letter" in document_type.lower(): |
|
template += ("[Your Name]\n[Your Address]\n[Your Phone]\n[Your Email]\n\n" |
|
"[Date]\n\n" |
|
"[Hiring Manager Name (if known), or 'Hiring Team']\n[Hiring Manager Title (if known)]\n[Company Name]\n[Company Address]\n\n" |
|
"**Subject: Application for [Job Title] Position - [Your Name]**\n\n" |
|
"Dear [Mr./Ms./Mx. Last Name or Hiring Team],\n\n" |
|
"**Introduction:** State the position you are applying for and where you saw the advertisement. Briefly express your enthusiasm for the role and the company. Mention 1-2 key qualifications that make you a strong fit.\n_[ Example: I am writing to express my strong interest in the [Job Title] position advertised on [Platform]. With my background in [Relevant Field] and proven ability to [Key Skill], I am confident I possess the skills and experience necessary to excel in this role and contribute significantly to [Company Name]. ]_\n\n" |
|
"**Body Paragraph(s):** Elaborate on your qualifications and experiences, directly addressing the requirements listed in the job description. Provide specific examples (using the STAR method implicitly can be effective). Explain why you are interested in *this specific* company and role. Show you've done your research.\n_[ Example: In my previous role at [Previous Company], I was responsible for [Responsibility relevant to new job]. I successfully [Quantifiable achievement relevant to new job], demonstrating my ability to [Skill required by new job]. I am particularly drawn to [Company Name]'s work in [Specific area company works in], as described in [Source, e.g., recent news, company website], and I believe my [Relevant skill/experience] would be a valuable asset to your team. ]_\n\n" |
|
"**Conclusion:** Reiterate your strong interest and suitability for the role. Briefly summarize your key strengths. State your call to action (e.g., "I am eager to discuss my qualifications further..."). Thank the reader for their time and consideration.\n_[ Example: Thank you for considering my application. My resume provides further detail on my qualifications. I am excited about the opportunity to contribute to [Company Name] and look forward to hearing from you soon. ]_\n\n" |
|
"Sincerely,\n\n[Your Typed Name]") |
|
elif "linkedin summary" in document_type.lower(): |
|
template += ("### LinkedIn Summary/About Section Template\n\n" |
|
"**Headline:** [ A concise, keyword-rich description of your professional identity, e.g., 'Software Engineer specializing in AI | Python | Cloud Computing | Seeking Innovative Opportunities' ]\n\n" |
|
"**About Section:**\n" |
|
"_[ Paragraph 1: Hook & Overview. Start with a compelling statement about your passion, expertise, or career mission. Briefly introduce who you are professionally and your main areas of focus. Use keywords relevant to your field and desired roles. ]_\n\n" |
|
"_[ Paragraph 2: Key Skills & Experience Highlights. Detail your core competencies and technical/soft skills. Mention key experiences or types of projects you've worked on. Quantify achievements where possible. Tailor this to the audience you want to attract (recruiters, clients, peers). ]_\n\n" |
|
"_[ Paragraph 3: Career Goals & What You're Seeking (Optional but recommended). Briefly state your career aspirations or the types of opportunities, connections, or collaborations you are looking for. ]_\n\n" |
|
"_[ Paragraph 4: Call to Action / Personality (Optional). You might end with an invitation to connect, mention personal interests related to your field, or add a touch of personality. ]_\n\n" |
|
"**Specialties/Keywords:** [ List 5-10 key terms related to your skills and industry, e.g., Project Management, Data Analysis, Agile Methodologies, Content Strategy, Java, Cloud Security ]") |
|
else: |
|
template += "_[ Basic structure for this document type will be provided here. ]_" |
|
|
|
|
|
return json.dumps({"template_markdown": template}) |
|
|
|
|
|
def create_personalized_routine(emotion: str, goal: str, available_time_minutes: int = 60, routine_length_days: int = 7) -> str: |
|
"""Creates a personalized routine, falling back to basic generation if needed.""" |
|
logger.info(f"Executing tool: create_personalized_routine(emotion='{emotion}', goal='{goal}', time={available_time_minutes}, days={routine_length_days})") |
|
try: |
|
logger.warning("create_personalized_routine tool is using the basic fallback generation.") |
|
routine = generate_basic_routine(emotion, goal, available_time_minutes, routine_length_days) |
|
if not routine: raise ValueError("Basic routine generation failed.") |
|
logger.info(f"Generated routine: {routine.get('name', 'Unnamed Routine')}") |
|
return json.dumps(routine) |
|
except Exception as e: |
|
logger.error(f"Error in create_personalized_routine tool: {e}") |
|
try: |
|
routine = generate_basic_routine(emotion, goal, available_time_minutes, routine_length_days) |
|
return json.dumps(routine) if routine else json.dumps({"error": "Failed to generate routine."}) |
|
except Exception as fallback_e: |
|
logger.error(f"Fallback routine generation also failed: {fallback_e}") |
|
return json.dumps({"error": f"Failed to generate routine: {e}"}) |
|
|
|
|
|
def analyze_resume(resume_text: str, career_goal: str) -> str: |
|
"""Provides analysis of the resume using AI (Simulated).""" |
|
logger.info(f"Executing tool: analyze_resume(career_goal='{career_goal}', resume_length={len(resume_text)})") |
|
logger.warning("analyze_resume tool is using placeholder analysis.") |
|
analysis = { "analysis": { "strengths": ["Placeholder: Clear objective/summary.", "Placeholder: Good use of action verbs."], "areas_for_improvement": ["Placeholder: Quantify achievements more.", f"Placeholder: Tailor skills section better for '{career_goal}'."], "format_feedback": "Placeholder: Overall format is clean, but consider standardizing date formats.", "content_feedback": f"Placeholder: Experience seems partially relevant to '{career_goal}', but highlight transferable skills.", "keyword_suggestions": ["Placeholder: Add keywords like 'Keyword1', 'Keyword2' relevant to goal."], "next_steps": ["Placeholder: Refine descriptions for last 2 roles.", "Placeholder: Add a project section if applicable."] } } |
|
return json.dumps(analysis) |
|
|
|
def analyze_portfolio(portfolio_description: str, career_goal: str, portfolio_url: str = "") -> str: |
|
"""Provides analysis of the portfolio using AI (Simulated).""" |
|
logger.info(f"Executing tool: analyze_portfolio(career_goal='{career_goal}', url='{portfolio_url}', desc_length={len(portfolio_description)})") |
|
logger.warning("analyze_portfolio tool is using placeholder analysis.") |
|
analysis = { "analysis": { "alignment_with_goal": f"Placeholder: Portfolio description suggests moderate alignment with '{career_goal}'.", "strengths": ["Placeholder: Variety of projects mentioned.", "Placeholder: Clear description provided."], "areas_for_improvement": ["Placeholder: Ensure project descriptions explicitly link to skills needed for the goal.", "Placeholder: Consider adding testimonials or case study depth."], "presentation_feedback": f"Placeholder: If URL ({portfolio_url}) provided, check for mobile responsiveness and clear navigation (visual analysis needed). Based on description, sounds organized.", "next_steps": ["Placeholder: Select 2-3 best projects strongly related to the goal and feature them prominently.", "Placeholder: Get feedback from peers in the target field."] } } |
|
return json.dumps(analysis) |
|
|
|
def extract_and_rate_skills_from_resume(resume_text: str, max_skills: int = 8) -> str: |
|
"""Extracts and rates skills from resume text (Simulated).""" |
|
logger.info(f"Executing tool: extract_and_rate_skills_from_resume(resume_length={len(resume_text)}, max_skills={max_skills})") |
|
logger.warning("extract_and_rate_skills_from_resume tool is using placeholder extraction.") |
|
possible_skills = ["Python", "Java", "JavaScript", "Project Management", "Communication", "Data Analysis", "Teamwork", "Leadership", "SQL", "React", "Customer Service", "Problem Solving", "Cloud Computing (AWS/Azure/GCP)", "Agile Methodologies", "Machine Learning"] |
|
found_skills = [] |
|
resume_lower = resume_text.lower() |
|
for skill in possible_skills: |
|
if re.search(r'\b' + re.escape(skill.lower()) + r'\b', resume_lower): |
|
found_skills.append({"name": skill, "score": random.randint(4, 9)}) |
|
if len(found_skills) >= max_skills: break |
|
if not found_skills and len(resume_text) > 50: |
|
found_skills = [ {"name": "Communication", "score": random.randint(5,8)}, {"name": "Teamwork", "score": random.randint(5,8)}, {"name": "Problem Solving", "score": random.randint(5,8)}, ] |
|
logger.info(f"Extracted skills (placeholder): {[s['name'] for s in found_skills]}") |
|
return json.dumps({"skills": found_skills[:max_skills]}) |
|
|
|
|
|
|
|
def get_ai_response(user_id: str, user_input: str, generate_recommendations: bool = True) -> str: |
|
"""Gets response from OpenAI, handling context, system prompt, and tool calls.""" |
|
logger.info(f"Getting AI response for user {user_id}. Input: '{user_input[:100]}...'") |
|
if not client: |
|
return "I apologize, the AI service is currently unavailable. Please check the configuration." |
|
|
|
try: |
|
user_profile = get_user_profile(user_id) |
|
if not user_profile: |
|
logger.error(f"Failed to retrieve profile for user {user_id}.") |
|
return "Sorry, I couldn't access your profile information right now." |
|
|
|
current_emotion_display = user_profile.get('current_emotion', 'Not specified') |
|
|
|
system_prompt = f""" |
|
You are Aishura, an emotionally intelligent AI career assistant. Your primary goal is to provide empathetic, realistic, and actionable career guidance. Always follow these steps: |
|
1. Acknowledge the user's message and, if applicable, their expressed emotion (e.g., "I understand you're feeling {current_emotion_display}..."). Use empathetic language. |
|
2. Directly address the user's query or statement. |
|
3. Proactively offer relevant support using your available tools: suggest generating document templates (`generate_document_template`), creating a personalized routine (`create_personalized_routine`), analyzing their resume (`analyze_resume`) or portfolio (`analyze_portfolio`) if appropriate or if they mention them. |
|
4. **Job Suggestions:** If the user asks for job opportunities or related help, **do not use a tool**. Instead, generate 2-3 plausible job titles/roles based on their stated main goal ('{user_profile.get('career_goal', 'Not specified')}') and location ('{user_profile.get('location', 'Not specified')}'). If they have provided a resume (path: '{user_profile.get('resume_path', '')}'), mention how their skills might align with these roles. Keep suggestions general and indicate they are examples, not live listings. |
|
5. Tailor your response based on the user's profile: Name: {user_profile.get('name', 'User')}, Location: {user_profile.get('location', 'Not specified')}, Goal: {user_profile.get('career_goal', 'Not specified')}. |
|
6. If the user has uploaded a resume or portfolio (check paths above), mention you can analyze them or reference previous analysis if relevant. |
|
7. Keep responses concise, friendly, and focused on next steps. Use markdown for formatting. |
|
8. If a tool call fails, inform the user gracefully (e.g., "I couldn't generate the template right now...") and suggest alternatives. Do not show raw error messages. |
|
""" |
|
|
|
|
|
messages = [{"role": "system", "content": system_prompt}] |
|
chat_history = user_profile.get('chat_history', []) |
|
for msg in chat_history: |
|
if isinstance(msg, dict) and 'role' in msg and 'content' in msg: |
|
|
|
content = msg['content'] if msg['content'] is not None else "" |
|
messages.append({"role": msg['role'], "content": content}) |
|
elif isinstance(msg, dict) and msg.get('role') == 'tool' and all(k in msg for k in ['tool_call_id', 'name', 'content']): |
|
|
|
tool_content = msg['content'] if isinstance(msg['content'], str) else json.dumps(msg['content']) |
|
messages.append({ "role": "tool", "tool_call_id": msg['tool_call_id'], "name": msg['name'], "content": tool_content }) |
|
|
|
messages.append({"role": "user", "content": user_input}) |
|
|
|
|
|
logger.info(f"Sending {len(messages)} messages to OpenAI model {MODEL_ID}.") |
|
response = client.chat.completions.create( |
|
model=MODEL_ID, |
|
messages=messages, |
|
tools=tools_list, |
|
tool_choice="auto", |
|
temperature=0.7, |
|
max_tokens=1500 |
|
) |
|
response_message = response.choices[0].message |
|
|
|
|
|
|
|
|
|
assistant_response_for_db = { |
|
"role": "assistant", |
|
"content": response_message.content, |
|
|
|
"tool_calls": [tc.model_dump() for tc in response_message.tool_calls] if response_message.tool_calls else None |
|
} |
|
|
|
|
|
final_response_content = response_message.content |
|
tool_calls = response_message.tool_calls |
|
|
|
|
|
if tool_calls: |
|
logger.info(f"AI requested {len(tool_calls)} tool call(s): {[tc.function.name for tc in tool_calls]}") |
|
|
|
messages.append(response_message) |
|
|
|
available_functions = { |
|
"generate_document_template": generate_document_template, |
|
"create_personalized_routine": create_personalized_routine, |
|
"analyze_resume": analyze_resume, |
|
"analyze_portfolio": analyze_portfolio, |
|
"extract_and_rate_skills_from_resume": extract_and_rate_skills_from_resume, |
|
} |
|
|
|
tool_results_for_api = [] |
|
tool_results_for_db = [] |
|
|
|
for tool_call in tool_calls: |
|
function_name = tool_call.function.name |
|
function_to_call = available_functions.get(function_name) |
|
try: |
|
function_args = json.loads(tool_call.function.arguments) |
|
if function_to_call: |
|
|
|
if function_name == "analyze_resume": |
|
if 'career_goal' not in function_args: function_args['career_goal'] = user_profile.get('career_goal', 'Not specified') |
|
save_user_resume(user_id, function_args.get('resume_text', '')) |
|
if function_name == "analyze_portfolio": |
|
if 'career_goal' not in function_args: function_args['career_goal'] = user_profile.get('career_goal', 'Not specified') |
|
save_user_portfolio(user_id, function_args.get('portfolio_url', ''), function_args.get('portfolio_description', '')) |
|
|
|
logger.info(f"Calling function '{function_name}' with args: {function_args}") |
|
function_response = function_to_call(**function_args) |
|
logger.info(f"Function '{function_name}' returned: {function_response[:200]}...") |
|
tool_result = { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": function_response } |
|
else: |
|
logger.warning(f"Function {function_name} requested by AI but not implemented.") |
|
tool_result = { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": json.dumps({"error": f"Tool '{function_name}' is not available."}) } |
|
except json.JSONDecodeError as e: |
|
logger.error(f"Error decoding arguments for {function_name}: {tool_call.function.arguments} - {e}") |
|
tool_result = { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": json.dumps({"error": f"Invalid arguments provided for tool {function_name}."}) } |
|
except Exception as e: |
|
logger.exception(f"Error executing function {function_name}: {e}") |
|
tool_result = { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": json.dumps({"error": f"Failed to execute tool {function_name}."}) } |
|
|
|
|
|
messages.append(tool_result) |
|
tool_results_for_db.append(tool_result) |
|
|
|
|
|
logger.info(f"Sending {len(messages)} messages to OpenAI (including tool results).") |
|
second_response = client.chat.completions.create( |
|
model=MODEL_ID, messages=messages, temperature=0.7, max_tokens=1500 |
|
) |
|
final_response_content = second_response.choices[0].message.content |
|
logger.info("Received final response from OpenAI after tool calls.") |
|
|
|
|
|
add_chat_message(user_id, "user", user_input) |
|
|
|
add_chat_message(user_id, "assistant", assistant_response_for_db) |
|
|
|
for res in tool_results_for_db: add_chat_message(user_id, "tool", res) |
|
|
|
add_chat_message(user_id, "assistant", {"role": "assistant", "content": final_response_content}) |
|
|
|
else: |
|
|
|
logger.info("No tool calls requested by AI.") |
|
|
|
add_chat_message(user_id, "user", user_input) |
|
|
|
add_chat_message(user_id, "assistant", {"role": "assistant", "content": final_response_content if final_response_content else ""}) |
|
|
|
|
|
|
|
if not final_response_content: |
|
final_response_content = "I've processed that. Is there anything else I can help you with?" |
|
logger.warning("AI returned empty content after processing.") |
|
|
|
|
|
if generate_recommendations: |
|
try: |
|
|
|
|
|
pass |
|
except Exception as rec_e: |
|
logger.error(f"Error during recommendation generation: {rec_e}") |
|
|
|
|
|
return final_response_content if final_response_content else "Action completed." |
|
|
|
except openai.APIError as e: |
|
logger.error(f"OpenAI API Error: {e.status_code} - {e.response}") |
|
return f"I'm sorry, there was an issue communicating with the AI service (Code: {e.status_code}). Please try again." |
|
except openai.APITimeoutError: |
|
logger.error("OpenAI API request timed out.") |
|
return "I'm sorry, the request to the AI service timed out. Please try again." |
|
except openai.APIConnectionError as e: |
|
logger.error(f"OpenAI Connection Error: {e}") |
|
return "I couldn't connect to the AI service. Please check your network connection." |
|
except openai.RateLimitError: |
|
logger.error("OpenAI Rate Limit Exceeded.") |
|
return "I'm experiencing high demand right now. Please try again in a moment." |
|
except Exception as e: |
|
logger.exception(f"Unexpected error in get_ai_response for user {user_id}: {e}") |
|
return "I apologize, but an unexpected error occurred. Please try restarting the conversation or try again later." |
|
|
|
|
|
|
|
def gen_recommendations_openai(user_id, user_input, ai_response): |
|
"""Generate recommendations using OpenAI.""" |
|
logger.info(f"Generating recommendations for user {user_id}") |
|
if not client: return [] |
|
try: |
|
user_profile = get_user_profile(user_id) |
|
prompt = f""" |
|
Based on the user profile and recent conversation, generate 1-3 specific, actionable recommendations for their next steps. Focus on practical actions. |
|
|
|
User Profile: Emotion: {user_profile.get('current_emotion', 'N/A')}, Goal: {user_profile.get('career_goal', 'N/A')}, Location: {user_profile.get('location', 'N/A')} |
|
Recent Interaction: User: {user_input} | AI: {ai_response} |
|
|
|
Generate recommendations in this JSON format ONLY (a list of objects): |
|
```json |
|
[ |
|
{{"title": "Concise title", "description": "Detailed explanation (2-3 sentences).", "action_type": "skill_building | networking | resume_update | portfolio_review | interview_prep | mindset_shift | other", "priority": "high | medium | low"}} |
|
] |
|
``` |
|
""" |
|
response = client.chat.completions.create( |
|
model=MODEL_ID, |
|
messages=[ {"role": "system", "content": "You generate career recommendations in JSON list format."}, {"role": "user", "content": prompt} ], |
|
temperature=0.5, max_tokens=512, |
|
|
|
|
|
) |
|
json_str = response.choices[0].message.content |
|
logger.info(f"Raw recommendations JSON string: {json_str}") |
|
try: |
|
|
|
if json_str.startswith("```json"): json_str = json_str.split("```json")[1].split("```")[0].strip() |
|
recommendations = json.loads(json_str) |
|
if not isinstance(recommendations, list): |
|
if isinstance(recommendations, dict) and len(recommendations) == 1: |
|
key = list(recommendations.keys())[0] |
|
if isinstance(recommendations[key], list): |
|
recommendations = recommendations[key] |
|
else: raise ValueError("JSON is not a list or expected object wrapper.") |
|
else: raise ValueError("JSON is not a list.") |
|
|
|
valid_recs_added = 0 |
|
for rec in recommendations: |
|
if isinstance(rec, dict) and all(k in rec for k in ['title', 'description', 'action_type', 'priority']): |
|
add_recommendation_to_user(user_id, rec); valid_recs_added += 1 |
|
else: logger.warning(f"Skipping invalid recommendation format: {rec}") |
|
logger.info(f"Added {valid_recs_added} recommendations.") |
|
return recommendations |
|
except (json.JSONDecodeError, ValueError) as e: |
|
logger.error(f"Failed to parse JSON recommendations: {e}\nResponse: {json_str}"); return [] |
|
except Exception as e: logger.exception(f"Error generating recommendations: {e}"); return [] |
|
|
|
|
|
|
|
def create_emotion_chart(user_id): |
|
"""Create a chart of user's emotions over time""" |
|
user_profile = get_user_profile(user_id) |
|
emotion_records = user_profile.get('daily_emotions', []) |
|
if not emotion_records: |
|
fig = go.Figure(); fig.add_annotation(text="No emotion data tracked yet.", showarrow=False); fig.update_layout(title="Emotion Tracking"); return fig |
|
emotion_values = {"Unmotivated": 1, "Anxious": 2, "Confused": 3, "Discouraged": 4, "Overwhelmed": 5, "Excited": 6} |
|
dates = [datetime.fromisoformat(record['date']) for record in emotion_records] |
|
emotion_scores = [emotion_values.get(record['emotion'], 3) for record in emotion_records] |
|
emotion_names = [record['emotion'] for record in emotion_records] |
|
df = pd.DataFrame({'Date': dates, 'Emotion Score': emotion_scores, 'Emotion': emotion_names}).sort_values('Date') |
|
fig = px.line(df, x='Date', y='Emotion Score', markers=True, labels={"Emotion Score": "Emotional State"}, title="Your Emotional Journey") |
|
fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Feeling: %{text}', text=df['Emotion']) |
|
fig.update_yaxes(tickvals=list(emotion_values.values()), ticktext=list(emotion_values.keys())) |
|
return fig |
|
|
|
def create_progress_chart(user_id): |
|
"""Create a chart showing user's progress points over time""" |
|
user_profile = get_user_profile(user_id) |
|
tasks = user_profile.get('completed_tasks', []) |
|
if not tasks: |
|
fig = go.Figure(); fig.add_annotation(text="No tasks completed yet.", showarrow=False); fig.update_layout(title="Progress Tracking"); return fig |
|
tasks.sort(key=lambda x: datetime.fromisoformat(x['date'])) |
|
dates, points_timeline, task_labels, cumulative_points = [], [], [], 0 |
|
points_per_task = 20 |
|
for task in tasks: |
|
dates.append(datetime.fromisoformat(task['date'])) |
|
|
|
|
|
cumulative_points += task.get('points', points_per_task) |
|
points_timeline.append(cumulative_points) |
|
task_labels.append(task['task']) |
|
df = pd.DataFrame({'Date': dates, 'Points': points_timeline, 'Task': task_labels}) |
|
fig = px.line(df, x='Date', y='Points', markers=True, title="Your Career Journey Progress") |
|
fig.update_traces(hovertemplate='%{x|%Y-%m-%d %H:%M}<br>Points: %{y}<br>Completed: %{text}', text=df['Task']) |
|
return fig |
|
|
|
def create_routine_completion_gauge(user_id): |
|
"""Create a gauge chart showing routine completion percentage""" |
|
user_profile = get_user_profile(user_id) |
|
routines = user_profile.get('routine_history', []) |
|
if not routines: |
|
fig = go.Figure(go.Indicator(mode="gauge", value=0, title={'text': "Routine Completion"})) |
|
fig.add_annotation(text="No active routine.", showarrow=False); return fig |
|
latest_routine = routines[0] |
|
completion = latest_routine.get('completion', 0) |
|
routine_name = latest_routine.get('routine', {}).get('name', 'Current Routine') |
|
fig = go.Figure(go.Indicator( |
|
mode = "gauge+number", value = completion, domain = {'x': [0, 1], 'y': [0, 1]}, |
|
title = {'text': f"{routine_name} Completion (%)"}, |
|
gauge = {'axis': {'range': [0, 100], 'tickwidth': 1, 'tickcolor': "darkblue"}, |
|
'bar': {'color': "cornflowerblue"}, 'bgcolor': "white", 'borderwidth': 2, 'bordercolor': "gray", |
|
'steps': [{'range': [0, 50], 'color': 'whitesmoke'}, {'range': [50, 80], 'color': 'lightgray'}], |
|
'threshold': {'line': {'color': "green", 'width': 4}, 'thickness': 0.75, 'value': 90}})) |
|
return fig |
|
|
|
def create_skill_radar_chart(user_id): |
|
"""Creates a radar chart of user's skills based on resume analysis.""" |
|
logger.info(f"Creating skill radar chart for user {user_id}") |
|
user_profile = get_user_profile(user_id) |
|
resume_path = user_profile.get('resume_path') |
|
if not resume_path or not os.path.exists(resume_path): |
|
logger.warning("No resume path found or file missing for skill chart.") |
|
fig = go.Figure(); fig.add_annotation(text="Upload & Analyze Resume for Skill Chart", showarrow=False); fig.update_layout(title="Skill Assessment"); return fig |
|
try: |
|
with open(resume_path, 'r', encoding='utf-8') as f: resume_text = f.read() |
|
|
|
skills_json_str = extract_and_rate_skills_from_resume(resume_text=resume_text) |
|
skill_data = json.loads(skills_json_str) |
|
if 'skills' in skill_data and skill_data['skills']: |
|
skills = skill_data['skills'][:8] |
|
categories = [skill['name'] for skill in skills] |
|
values = [skill['score'] for skill in skills] |
|
if len(categories) > 2: categories.append(categories[0]); values.append(values[0]) |
|
fig = go.Figure() |
|
fig.add_trace(go.Scatterpolar(r=values, theta=categories, fill='toself', name='Skills')) |
|
fig.update_layout(polar=dict(radialaxis=dict(visible=True, range=[0, 10])), showlegend=False, title="Skill Assessment (Based on Resume)") |
|
logger.info(f"Successfully created radar chart with {len(skills)} skills.") |
|
return fig |
|
else: |
|
logger.warning("Could not extract skills from resume for chart.") |
|
fig = go.Figure(); fig.add_annotation(text="Could not extract skills from resume", showarrow=False); fig.update_layout(title="Skill Assessment"); return fig |
|
except Exception as e: |
|
logger.exception(f"Error creating skill radar chart: {e}") |
|
fig = go.Figure(); fig.add_annotation(text="Error analyzing skills", showarrow=False); fig.update_layout(title="Skill Assessment"); return fig |
|
|
|
|
|
def create_interface(): |
|
"""Create the Gradio interface for Aishura""" |
|
session_user_id = str(uuid.uuid4()) |
|
logger.info(f"Initializing Gradio interface for session user ID: {session_user_id}") |
|
get_user_profile(session_user_id) |
|
|
|
|
|
def welcome(name, location, emotion, goal): |
|
"""Handles welcome screen submission.""" |
|
logger.info(f"Welcome action: name='{name}', loc='{location}', emo='{emotion}', goal='{goal}'") |
|
if not all([name, location, emotion, goal]): |
|
return ("Please fill out all fields.", gr.update(visible=True), gr.update(visible=False)) |
|
|
|
cleaned_goal = goal.rsplit(" ", 1)[0] if goal[-1].isnumeric() == False and goal[-2] == " " else goal |
|
update_user_profile(session_user_id, {"name": name, "location": location, "career_goal": cleaned_goal}) |
|
add_emotion_record(session_user_id, emotion) |
|
initial_input = f"Hi Aishura! I'm {name} from {location}. I'm feeling {emotion}, and my main goal is '{cleaned_goal}'. Can you help me get started?" |
|
ai_response = get_ai_response(session_user_id, initial_input, generate_recommendations=True) |
|
initial_chat = [{"role":"user", "content": initial_input}, {"role":"assistant", "content": ai_response}] |
|
|
|
emotion_fig = create_emotion_chart(session_user_id) |
|
progress_fig = create_progress_chart(session_user_id) |
|
routine_fig = create_routine_completion_gauge(session_user_id) |
|
skill_fig = create_skill_radar_chart(session_user_id) |
|
|
|
return (gr.update(value=initial_chat), |
|
gr.update(visible=False), gr.update(visible=True), |
|
gr.update(value=emotion_fig), gr.update(value=progress_fig), |
|
gr.update(value=routine_fig), gr.update(value=skill_fig)) |
|
|
|
def chat_submit(message_text, history_list_dicts): |
|
"""Handles sending a message in the chatbot (using messages format).""" |
|
logger.info(f"Chat submit: '{message_text[:50]}...'") |
|
if not message_text: return history_list_dicts, "", gr.update() |
|
|
|
|
|
history_list_dicts.append({"role": "user", "content": message_text}) |
|
|
|
|
|
ai_response_text = get_ai_response(session_user_id, message_text, generate_recommendations=True) |
|
|
|
|
|
history_list_dicts.append({"role": "assistant", "content": ai_response_text}) |
|
|
|
|
|
recommendations_md = display_recommendations(session_user_id) |
|
|
|
|
|
return history_list_dicts, "", gr.update(value=recommendations_md) |
|
|
|
|
|
|
|
def generate_template_interface_handler(doc_type, career_field, experience): |
|
logger.info(f"Manual Template UI: type='{doc_type}', field='{career_field}', exp='{experience}'") |
|
template_json_str = generate_document_template(doc_type, career_field, experience) |
|
try: |
|
template_data = json.loads(template_json_str); return template_data.get('template_markdown', "Error.") |
|
except: return "Error displaying template." |
|
|
|
def create_routine_interface_handler(emotion, goal, time_available, days): |
|
logger.info(f"Manual Routine UI: emo='{emotion}', goal='{goal}', time='{time_available}', days='{days}'") |
|
|
|
cleaned_emotion = emotion.split(" ")[0] if " " in emotion else emotion |
|
routine_json_str = create_personalized_routine(cleaned_emotion, goal, int(time_available), int(days)) |
|
try: |
|
routine_data = json.loads(routine_json_str) |
|
if "error" in routine_data: return f"Error: {routine_data['error']}", gr.update() |
|
add_routine_to_user(session_user_id, routine_data) |
|
output_md = f"# Your {routine_data.get('name', 'Personalized Routine')}\n\n{routine_data.get('description', '')}\n\n" |
|
for day_plan in routine_data.get('daily_tasks', []): |
|
output_md += f"## Day {day_plan.get('day', '?')}\n" |
|
tasks = day_plan.get('tasks', []) |
|
if not tasks: output_md += "- Rest day or free choice.\n" |
|
else: |
|
for task in tasks: |
|
output_md += f"- **{task.get('name', 'Task')}** ({task.get('duration', '?')} mins)\n *Why: {task.get('description', '...') }*\n" |
|
output_md += "\n" |
|
gauge_fig = create_routine_completion_gauge(session_user_id) |
|
return output_md, gr.update(value=gauge_fig) |
|
except: return "Error displaying routine.", gr.update() |
|
|
|
def analyze_resume_interface_handler(resume_text): |
|
logger.info(f"Manual Resume Analysis UI: length={len(resume_text)}") |
|
if not resume_text: return "Please paste your resume text.", gr.update(value=None) |
|
user_profile = get_user_profile(session_user_id) |
|
career_goal = user_profile.get('career_goal', 'Not specified') |
|
save_user_resume(session_user_id, resume_text) |
|
analysis_json_str = analyze_resume(resume_text, career_goal) |
|
try: |
|
analysis_data = json.loads(analysis_json_str).get('analysis', {}) |
|
output_md = "## Resume Analysis Results (Simulated)\n\n" |
|
output_md += f"**Analysis vs Goal:** '{career_goal}'\n\n" |
|
output_md += "**Strengths:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('strengths', [])]) + "\n\n" |
|
output_md += "**Areas for Improvement:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('areas_for_improvement', [])]) + "\n\n" |
|
output_md += f"**Format Feedback:** {analysis_data.get('format_feedback', 'N/A')}\n" |
|
output_md += f"**Content Feedback:** {analysis_data.get('content_feedback', 'N/A')}\n" |
|
output_md += f"**Keyword Suggestions:** {', '.join(analysis_data.get('keyword_suggestions', []))}\n\n" |
|
output_md += "**Next Steps:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('next_steps', [])]) |
|
skill_fig = create_skill_radar_chart(session_user_id) |
|
return output_md, gr.update(value=skill_fig) |
|
except: return "Error displaying analysis.", gr.update(value=None) |
|
|
|
def analyze_portfolio_interface_handler(portfolio_url, portfolio_description): |
|
logger.info(f"Manual Portfolio Analysis UI: url='{portfolio_url}', desc_len={len(portfolio_description)}") |
|
if not portfolio_description: return "Please provide a description." |
|
user_profile = get_user_profile(session_user_id) |
|
career_goal = user_profile.get('career_goal', 'Not specified') |
|
save_user_portfolio(session_user_id, portfolio_url, portfolio_description) |
|
analysis_json_str = analyze_portfolio(portfolio_description, career_goal, portfolio_url) |
|
try: |
|
analysis_data = json.loads(analysis_json_str).get('analysis', {}) |
|
output_md = "## Portfolio Analysis Results (Simulated)\n\n" |
|
output_md += f"**Analysis vs Goal:** '{career_goal}'\n" |
|
if portfolio_url: output_md += f"**URL:** {portfolio_url}\n\n" |
|
output_md += f"**Alignment:** {analysis_data.get('alignment_with_goal', 'N/A')}\n\n" |
|
output_md += "**Strengths:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('strengths', [])]) + "\n\n" |
|
output_md += "**Areas for Improvement:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('areas_for_improvement', [])]) + "\n\n" |
|
output_md += f"**Presentation Feedback:** {analysis_data.get('presentation_feedback', 'N/A')}\n\n" |
|
output_md += "**Next Steps:**\n" + "\n".join([f"- {s}" for s in analysis_data.get('next_steps', [])]) |
|
return output_md |
|
except: return "Error displaying analysis." |
|
|
|
|
|
def complete_task_handler(task_name): |
|
logger.info(f"Complete Task UI: task='{task_name}'") |
|
if not task_name: return ("Enter task name.", "", gr.update(), gr.update(), gr.update()) |
|
add_task_to_user(session_user_id, task_name) |
|
|
|
db = load_user_database(); profile = db.get('users', {}).get(session_user_id) |
|
if profile and profile.get('routine_history'): |
|
latest_routine_entry = profile['routine_history'][0] |
|
increment = random.randint(5, 15) |
|
new_completion = min(100, latest_routine_entry.get('completion', 0) + increment) |
|
latest_routine_entry['completion'] = new_completion; save_user_database(db) |
|
|
|
emotion_fig = create_emotion_chart(session_user_id) |
|
progress_fig = create_progress_chart(session_user_id) |
|
gauge_fig = create_routine_completion_gauge(session_user_id) |
|
return (f"Great job on '{task_name}'!", "", gr.update(value=emotion_fig), gr.update(value=progress_fig), gr.update(value=gauge_fig)) |
|
|
|
def update_emotion_handler(emotion): |
|
logger.info(f"Update Emotion UI: emotion='{emotion}'") |
|
if not emotion: return "Please select an emotion.", gr.update() |
|
add_emotion_record(session_user_id, emotion) |
|
emotion_fig = create_emotion_chart(session_user_id) |
|
|
|
cleaned_emotion_display = emotion.split(" ")[0] if " " in emotion else emotion |
|
return f"Emotion updated to '{cleaned_emotion_display}'.", gr.update(value=emotion_fig) |
|
|
|
def display_recommendations(current_user_id): |
|
"""Fetches and formats recommendations.""" |
|
logger.info(f"Displaying recommendations for user {current_user_id}") |
|
user_profile = get_user_profile(current_user_id) |
|
recommendations = user_profile.get('recommendations', []) |
|
if not recommendations: return "Chat with Aishura to get recommendations!" |
|
recent_recs = recommendations[:5] |
|
output_md = "# Your Latest Recommendations\n\n" |
|
if not recent_recs: return output_md + "No recommendations yet." |
|
for i, rec_entry in enumerate(recent_recs, 1): |
|
rec = rec_entry.get('recommendation', {}) |
|
output_md += f"### {i}. {rec.get('title', 'N/A')}\n" |
|
output_md += f"{rec.get('description', 'N/A')}\n" |
|
output_md += f"**Priority:** {rec.get('priority', 'N/A').title()} | **Type:** {rec.get('action_type', 'N/A').replace('_', ' ').title()}\n---\n" |
|
return output_md |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky")) as app: |
|
gr.Markdown("# Aishura - Your AI Career Assistant") |
|
|
|
|
|
with gr.Group(visible=True) as welcome_group: |
|
gr.Markdown("## Welcome to Aishura!") |
|
gr.Markdown("Let's get acquainted. Tell me a bit about yourself.") |
|
with gr.Row(): |
|
with gr.Column(): |
|
name_input = gr.Textbox(label="Your Name", placeholder="e.g., Alex Chen") |
|
location_input = gr.Textbox(label="Your Location", placeholder="e.g., London, UK") |
|
with gr.Column(): |
|
|
|
emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling today?") |
|
goal_dropdown = gr.Dropdown(choices=GOAL_TYPES, label="What's your main goal?") |
|
welcome_button = gr.Button("Start My Journey") |
|
welcome_output = gr.Markdown() |
|
|
|
|
|
with gr.Group(visible=False) as main_interface: |
|
with gr.Tabs() as tabs: |
|
|
|
with gr.TabItem("π¬ Chat"): |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
|
|
chatbot = gr.Chatbot( |
|
label="Aishura Assistant", height=550, type="messages", |
|
avatar_images=("./user_avatar.png", "./aishura_avatar.png"), |
|
show_copy_button=True |
|
|
|
) |
|
emotion_message_area = gr.Markdown("", visible=False, elem_classes="subtle-message") |
|
msg_textbox = gr.Textbox(show_label=False, placeholder="Type your message...", container=False, scale=1) |
|
with gr.Column(scale=1): |
|
gr.Markdown("### β¨ Recommendations") |
|
recommendation_output = gr.Markdown(value="Chat for recommendations.") |
|
refresh_recs_button = gr.Button("π Refresh Recommendations") |
|
|
|
|
|
with gr.TabItem("π Analysis"): |
|
with gr.Tabs() as analysis_subtabs: |
|
with gr.TabItem("π Resume"): |
|
gr.Markdown("### Resume Analysis") |
|
gr.Markdown("Paste resume below for analysis against your goals.") |
|
resume_text_input = gr.Textbox(label="Paste Resume Text Here", lines=15) |
|
analyze_resume_button = gr.Button("Analyze My Resume") |
|
resume_analysis_output = gr.Markdown() |
|
with gr.TabItem("π¨ Portfolio"): |
|
gr.Markdown("### Portfolio Analysis") |
|
gr.Markdown("Provide link/description.") |
|
portfolio_url_input = gr.Textbox(label="Portfolio URL (Optional)") |
|
portfolio_desc_input = gr.Textbox(label="Portfolio Description", lines=5) |
|
analyze_portfolio_button = gr.Button("Analyze My Portfolio") |
|
portfolio_analysis_output = gr.Markdown() |
|
with gr.TabItem("π‘ Skills"): |
|
gr.Markdown("### Skill Assessment") |
|
gr.Markdown("Visualize skills from resume analysis.") |
|
skill_radar_chart_output = gr.Plot(label="Skill Radar Chart") |
|
|
|
|
|
with gr.TabItem("π οΈ Tools"): |
|
with gr.Tabs() as tools_subtabs: |
|
|
|
with gr.TabItem("π Templates"): |
|
gr.Markdown("### Generate Document Templates") |
|
gr.Markdown("Get started with career documents.") |
|
doc_type_dropdown = gr.Dropdown(choices=["Resume", "Cover Letter", "LinkedIn Summary", "Networking Email"], label="Select Document Type") |
|
doc_field_input = gr.Textbox(label="Career Field (Optional)") |
|
doc_exp_dropdown = gr.Dropdown(choices=["Entry-Level", "Mid-Career", "Senior-Level", "Student/Intern"], label="Experience Level") |
|
generate_template_button = gr.Button("Generate Template") |
|
template_output_md = gr.Markdown() |
|
with gr.TabItem("π
Routine"): |
|
gr.Markdown("### Create a Personalized Routine") |
|
gr.Markdown("Develop a plan tailored to your goals and feelings.") |
|
routine_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling?") |
|
routine_goal_input = gr.Textbox(label="Specific Goal", placeholder="e.g., Apply to 5 jobs") |
|
routine_time_slider = gr.Slider(minimum=15, maximum=120, value=45, step=15, label="Minutes/Day") |
|
routine_days_slider = gr.Slider(minimum=3, maximum=21, value=7, step=1, label="Routine Length (Days)") |
|
create_routine_button = gr.Button("Create My Routine") |
|
routine_output_md = gr.Markdown() |
|
|
|
|
|
with gr.TabItem("π Progress"): |
|
gr.Markdown("## Track Your Journey") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("### Mark Task Complete"); task_input = gr.Textbox(label="Task Name"); complete_button = gr.Button("Complete Task"); task_output = gr.Markdown() |
|
gr.Markdown("---"); gr.Markdown("### Update Emotion"); new_emotion_dropdown = gr.Dropdown(choices=EMOTIONS, label="How are you feeling now?"); emotion_button = gr.Button("Update Feeling"); emotion_output = gr.Markdown() |
|
with gr.Column(scale=2): |
|
gr.Markdown("### Visualizations") |
|
with gr.Row(): emotion_chart_output = gr.Plot(label="Emotional Journey") |
|
with gr.Row(): progress_chart_output = gr.Plot(label="Progress Points") |
|
with gr.Row(): routine_gauge_output = gr.Plot(label="Routine Completion") |
|
|
|
|
|
welcome_button.click( |
|
fn=welcome, inputs=[name_input, location_input, emotion_dropdown, goal_dropdown], |
|
outputs=[chatbot, welcome_group, main_interface, emotion_chart_output, progress_chart_output, routine_gauge_output, skill_radar_chart_output] |
|
) |
|
msg_textbox.submit( fn=chat_submit, inputs=[msg_textbox, chatbot], outputs=[chatbot, msg_textbox, recommendation_output] ) |
|
refresh_recs_button.click( fn=lambda: display_recommendations(session_user_id), outputs=[recommendation_output] ) |
|
|
|
analyze_resume_button.click( fn=analyze_resume_interface_handler, inputs=[resume_text_input], outputs=[resume_analysis_output, skill_radar_chart_output] ) |
|
analyze_portfolio_button.click( fn=analyze_portfolio_interface_handler, inputs=[portfolio_url_input, portfolio_desc_input], outputs=[portfolio_analysis_output] ) |
|
|
|
generate_template_button.click( fn=generate_template_interface_handler, inputs=[doc_type_dropdown, doc_field_input, doc_exp_dropdown], outputs=[template_output_md] ) |
|
create_routine_button.click( fn=create_routine_interface_handler, inputs=[routine_emotion_dropdown, routine_goal_input, routine_time_slider, routine_days_slider], outputs=[routine_output_md, routine_gauge_output] ) |
|
|
|
complete_button.click( fn=complete_task_handler, inputs=[task_input], outputs=[task_output, task_input, emotion_chart_output, progress_chart_output, routine_gauge_output] ) |
|
emotion_button.click( fn=update_emotion_handler, inputs=[new_emotion_dropdown], outputs=[emotion_output, emotion_chart_output] ) |
|
|
|
return app |
|
|
|
|
|
if __name__ == "__main__": |
|
if not OPENAI_API_KEY: |
|
print("\n" + "*"*60) |
|
print(" Warning: OPENAI_API_KEY environment variable not found. ") |
|
print(" AI features require a valid OpenAI API key. ") |
|
print(" Create a '.env' file with: OPENAI_API_KEY=your_openai_key ") |
|
print("*"*60 + "\n") |
|
|
|
|
|
|
|
logger.info("Starting Aishura Gradio application...") |
|
aishura_app = create_interface() |
|
aishura_app.launch(share=False) |
|
logger.info("Aishura Gradio application stopped.") |