Spaces:
Runtime error
Runtime error
import json | |
import os | |
import re | |
import warnings | |
from operator import itemgetter | |
from typing import ( | |
Any, | |
AsyncIterator, | |
Callable, | |
Dict, | |
Iterator, | |
List, | |
Literal, | |
Mapping, | |
Optional, | |
Sequence, | |
Tuple, | |
Type, | |
TypedDict, | |
Union, | |
cast, | |
) | |
import anthropic | |
from langchain_core._api import deprecated | |
from langchain_core.callbacks import ( | |
AsyncCallbackManagerForLLMRun, | |
CallbackManagerForLLMRun, | |
) | |
from langchain_core.language_models import LanguageModelInput | |
from langchain_core.language_models.chat_models import ( | |
BaseChatModel, | |
LangSmithParams, | |
agenerate_from_stream, | |
generate_from_stream, | |
) | |
from langchain_core.messages import ( | |
AIMessage, | |
AIMessageChunk, | |
BaseMessage, | |
HumanMessage, | |
SystemMessage, | |
ToolCall, | |
ToolMessage, | |
) | |
from langchain_core.messages.ai import UsageMetadata | |
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult | |
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator | |
from langchain_core.runnables import ( | |
Runnable, | |
RunnableMap, | |
RunnablePassthrough, | |
) | |
from langchain_core.tools import BaseTool | |
from langchain_core.utils import ( | |
build_extra_kwargs, | |
convert_to_secret_str, | |
get_pydantic_field_names, | |
) | |
from langchain_core.utils.function_calling import convert_to_openai_tool | |
from langchain_anthropic.output_parsers import ToolsOutputParser, extract_tool_calls | |
_message_type_lookups = { | |
"human": "user", | |
"ai": "assistant", | |
"AIMessageChunk": "assistant", | |
"HumanMessageChunk": "user", | |
} | |
def _format_image(image_url: str) -> Dict: | |
""" | |
Formats an image of format data:image/jpeg;base64,{b64_string} | |
to a dict for anthropic api | |
{ | |
"type": "base64", | |
"media_type": "image/jpeg", | |
"data": "/9j/4AAQSkZJRg...", | |
} | |
And throws an error if it's not a b64 image | |
""" | |
regex = r"^data:(?P<media_type>image/.+);base64,(?P<data>.+)$" | |
match = re.match(regex, image_url) | |
if match is None: | |
raise ValueError( | |
"Anthropic only supports base64-encoded images currently." | |
" Example: data:image/png;base64,'/9j/4AAQSk'..." | |
) | |
return { | |
"type": "base64", | |
"media_type": match.group("media_type"), | |
"data": match.group("data"), | |
} | |
def _merge_messages( | |
messages: Sequence[BaseMessage], | |
) -> List[Union[SystemMessage, AIMessage, HumanMessage]]: | |
"""Merge runs of human/tool messages into single human messages with content blocks.""" # noqa: E501 | |
merged: list = [] | |
for curr in messages: | |
curr = curr.copy(deep=True) | |
if isinstance(curr, ToolMessage): | |
if isinstance(curr.content, str): | |
curr = HumanMessage( # type: ignore[misc] | |
[ | |
{ | |
"type": "tool_result", | |
"content": curr.content, | |
"tool_use_id": curr.tool_call_id, | |
} | |
] | |
) | |
else: | |
curr = HumanMessage(curr.content) # type: ignore[misc] | |
last = merged[-1] if merged else None | |
if isinstance(last, HumanMessage) and isinstance(curr, HumanMessage): | |
if isinstance(last.content, str): | |
new_content: List = [{"type": "text", "text": last.content}] | |
else: | |
new_content = last.content | |
if isinstance(curr.content, str): | |
new_content.append({"type": "text", "text": curr.content}) | |
else: | |
new_content.extend(curr.content) | |
last.content = new_content | |
else: | |
merged.append(curr) | |
return merged | |
def _format_messages(messages: List[BaseMessage]) -> Tuple[Optional[str], List[Dict]]: | |
"""Format messages for anthropic.""" | |
""" | |
[ | |
{ | |
"role": _message_type_lookups[m.type], | |
"content": [_AnthropicMessageContent(text=m.content).dict()], | |
} | |
for m in messages | |
] | |
""" | |
system: Optional[str] = None | |
formatted_messages: List[Dict] = [] | |
merged_messages = _merge_messages(messages) | |
for i, message in enumerate(merged_messages): | |
if message.type == "system": | |
if i != 0: | |
raise ValueError("System message must be at beginning of message list.") | |
if not isinstance(message.content, str): | |
raise ValueError( | |
"System message must be a string, " | |
f"instead was: {type(message.content)}" | |
) | |
system = message.content | |
continue | |
role = _message_type_lookups[message.type] | |
content: Union[str, List] | |
if not isinstance(message.content, str): | |
# parse as dict | |
assert isinstance( | |
message.content, list | |
), "Anthropic message content must be str or list of dicts" | |
# populate content | |
content = [] | |
for item in message.content: | |
if isinstance(item, str): | |
content.append({"type": "text", "text": item}) | |
elif isinstance(item, dict): | |
if "type" not in item: | |
raise ValueError("Dict content item must have a type key") | |
elif item["type"] == "image_url": | |
# convert format | |
source = _format_image(item["image_url"]["url"]) | |
content.append({"type": "image", "source": source}) | |
elif item["type"] == "tool_use": | |
# If a tool_call with the same id as a tool_use content block | |
# exists, the tool_call is preferred. | |
if isinstance(message, AIMessage) and item["id"] in [ | |
tc["id"] for tc in message.tool_calls | |
]: | |
overlapping = [ | |
tc | |
for tc in message.tool_calls | |
if tc["id"] == item["id"] | |
] | |
content.extend( | |
_lc_tool_calls_to_anthropic_tool_use_blocks(overlapping) | |
) | |
else: | |
item.pop("text", None) | |
content.append(item) | |
elif item["type"] == "text": | |
text = item.get("text", "") | |
# Only add non-empty strings for now as empty ones are not | |
# accepted. | |
# https://github.com/anthropics/anthropic-sdk-python/issues/461 | |
if text.strip(): | |
content.append({"type": "text", "text": text}) | |
else: | |
content.append(item) | |
else: | |
raise ValueError( | |
f"Content items must be str or dict, instead was: {type(item)}" | |
) | |
elif isinstance(message, AIMessage) and message.tool_calls: | |
content = ( | |
[] | |
if not message.content | |
else [{"type": "text", "text": message.content}] | |
) | |
# Note: Anthropic can't have invalid tool calls as presently defined, | |
# since the model already returns dicts args not JSON strings, and invalid | |
# tool calls are those with invalid JSON for args. | |
content += _lc_tool_calls_to_anthropic_tool_use_blocks(message.tool_calls) | |
else: | |
content = message.content | |
formatted_messages.append({"role": role, "content": content}) | |
return system, formatted_messages | |
class ChatAnthropic(BaseChatModel): | |
"""Anthropic chat model integration. | |
See https://docs.anthropic.com/en/docs/models-overview for a list of the latest models. | |
Setup: | |
Install ``langchain-anthropic`` and set environment variable ``ANTHROPIC_API_KEY``. | |
.. code-block:: bash | |
pip install -U langchain-anthropic | |
export ANTHROPIC_API_KEY="your-api-key" | |
Key init args — completion params: | |
model: str | |
Name of Anthropic model to use. E.g. "claude-3-sonnet-20240229". | |
temperature: float | |
Sampling temperature. Ranges from 0.0 to 1.0. | |
max_tokens: Optional[int] | |
Max number of tokens to generate. | |
Key init args — client params: | |
timeout: Optional[float] | |
Timeout for requests. | |
max_retries: int | |
Max number of retries if a request fails. | |
api_key: Optional[str] | |
Anthropic API key. If not passed in will be read from env var ANTHROPIC_API_KEY. | |
base_url: Optional[str] | |
Base URL for API requests. Only specify if using a proxy or service | |
emulator. | |
See full list of supported init args and their descriptions in the params section. | |
Instantiate: | |
.. code-block:: python | |
from langchain_anthropic import ChatAnthropic | |
llm = ChatAnthropic( | |
model="claude-3-sonnet-20240229", | |
temperature=0, | |
max_tokens=1024, | |
timeout=None, | |
max_retries=2, | |
# api_key="...", | |
# base_url="...", | |
# other params... | |
) | |
**NOTE**: Any param which is not explicitly supported will be passed directly to the | |
``anthropic.Anthropic.messages.create(...)`` API every time to the model is | |
invoked. For example: | |
.. code-block:: python | |
from langchain_anthropic import ChatAnthropic | |
import anthropic | |
ChatAnthropic(..., extra_headers={}).invoke(...) | |
# results in underlying API call of: | |
anthropic.Anthropic(..).messages.create(..., extra_headers={}) | |
# which is also equivalent to: | |
ChatAnthropic(...).invoke(..., extra_headers={}) | |
Invoke: | |
.. code-block:: python | |
messages = [ | |
("system", "You are a helpful translator. Translate the user sentence to French."), | |
("human", "I love programming."), | |
] | |
llm.invoke(messages) | |
.. code-block:: python | |
AIMessage(content="J'aime la programmation.", response_metadata={'id': 'msg_01Trik66aiQ9Z1higrD5XFx3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 25, 'output_tokens': 11}}, id='run-5886ac5f-3c2e-49f5-8a44-b1e92808c929-0', usage_metadata={'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36}) | |
Stream: | |
.. code-block:: python | |
for chunk in llm.stream(messages): | |
print(chunk) | |
.. code-block:: python | |
AIMessageChunk(content='J', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25') | |
AIMessageChunk(content="'", id='run-272ff5f9-8485-402c-b90d-eac8babc5b25') | |
AIMessageChunk(content='a', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25') | |
AIMessageChunk(content='ime', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25') | |
AIMessageChunk(content=' la', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25') | |
AIMessageChunk(content=' programm', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25') | |
AIMessageChunk(content='ation', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25') | |
AIMessageChunk(content='.', id='run-272ff5f9-8485-402c-b90d-eac8babc5b25') | |
.. code-block:: python | |
stream = llm.stream(messages) | |
full = next(stream) | |
for chunk in stream: | |
full += chunk | |
full | |
.. code-block:: python | |
AIMessageChunk(content="J'aime la programmation.", id='run-b34faef0-882f-4869-a19c-ed2b856e6361') | |
Async: | |
.. code-block:: python | |
await llm.ainvoke(messages) | |
# stream: | |
# async for chunk in (await llm.astream(messages)) | |
# batch: | |
# await llm.abatch([messages]) | |
.. code-block:: python | |
AIMessage(content="J'aime la programmation.", response_metadata={'id': 'msg_01Trik66aiQ9Z1higrD5XFx3', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 25, 'output_tokens': 11}}, id='run-5886ac5f-3c2e-49f5-8a44-b1e92808c929-0', usage_metadata={'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36}) | |
Tool calling: | |
.. code-block:: python | |
from langchain_core.pydantic_v1 import BaseModel, Field | |
class GetWeather(BaseModel): | |
'''Get the current weather in a given location''' | |
location: str = Field(..., description="The city and state, e.g. San Francisco, CA") | |
class GetPopulation(BaseModel): | |
'''Get the current population in a given location''' | |
location: str = Field(..., description="The city and state, e.g. San Francisco, CA") | |
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation]) | |
ai_msg = llm_with_tools.invoke("Which city is hotter today and which is bigger: LA or NY?") | |
ai_msg.tool_calls | |
.. code-block:: python | |
[{'name': 'GetWeather', | |
'args': {'location': 'Los Angeles, CA'}, | |
'id': 'toolu_01KzpPEAgzura7hpBqwHbWdo'}, | |
{'name': 'GetWeather', | |
'args': {'location': 'New York, NY'}, | |
'id': 'toolu_01JtgbVGVJbiSwtZk3Uycezx'}, | |
{'name': 'GetPopulation', | |
'args': {'location': 'Los Angeles, CA'}, | |
'id': 'toolu_01429aygngesudV9nTbCKGuw'}, | |
{'name': 'GetPopulation', | |
'args': {'location': 'New York, NY'}, | |
'id': 'toolu_01JPktyd44tVMeBcPPnFSEJG'}] | |
See ``ChatAnthropic.bind_tools()`` method for more. | |
Structured output: | |
.. code-block:: python | |
from typing import Optional | |
from langchain_core.pydantic_v1 import BaseModel, Field | |
class Joke(BaseModel): | |
'''Joke to tell user.''' | |
setup: str = Field(description="The setup of the joke") | |
punchline: str = Field(description="The punchline to the joke") | |
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10") | |
structured_llm = llm.with_structured_output(Joke) | |
structured_llm.invoke("Tell me a joke about cats") | |
.. code-block:: python | |
Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None) | |
See ``ChatAnthropic.with_structured_output()`` for more. | |
Image input: | |
.. code-block:: python | |
import base64 | |
import httpx | |
from langchain_core.messages import HumanMessage | |
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" | |
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8") | |
message = HumanMessage( | |
content=[ | |
{"type": "text", "text": "describe the weather in this image"}, | |
{ | |
"type": "image_url", | |
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"}, | |
}, | |
], | |
) | |
ai_msg = llm.invoke([message]) | |
ai_msg.content | |
.. code-block:: python | |
"The image depicts a sunny day with a partly cloudy sky. The sky is a brilliant blue color with scattered white clouds drifting across. The lighting and cloud patterns suggest pleasant, mild weather conditions. The scene shows a grassy field or meadow with a wooden boardwalk trail leading through it, indicating an outdoor setting on a nice day well-suited for enjoying nature." | |
Token usage: | |
.. code-block:: python | |
ai_msg = llm.invoke(messages) | |
ai_msg.usage_metadata | |
.. code-block:: python | |
{'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36} | |
Message chunks containing token usage will be included during streaming by | |
default: | |
.. code-block:: python | |
stream = llm.stream(messages) | |
full = next(stream) | |
for chunk in stream: | |
full += chunk | |
full.usage_metadata | |
.. code-block:: python | |
{'input_tokens': 25, 'output_tokens': 11, 'total_tokens': 36} | |
These can be disabled by setting ``stream_usage=False`` in the stream method, | |
or by setting ``stream_usage=False`` when initializing ChatAnthropic. | |
Response metadata | |
.. code-block:: python | |
ai_msg = llm.invoke(messages) | |
ai_msg.response_metadata | |
.. code-block:: python | |
{'id': 'msg_013xU6FHEGEq76aP4RgFerVT', | |
'model': 'claude-3-sonnet-20240229', | |
'stop_reason': 'end_turn', | |
'stop_sequence': None, | |
'usage': {'input_tokens': 25, 'output_tokens': 11}} | |
""" # noqa: E501 | |
class Config: | |
"""Configuration for this pydantic object.""" | |
allow_population_by_field_name = True | |
_client: anthropic.Client = Field(default=None) | |
_async_client: anthropic.AsyncClient = Field(default=None) | |
model: str = Field(alias="model_name") | |
"""Model name to use.""" | |
max_tokens: int = Field(default=1024, alias="max_tokens_to_sample") | |
"""Denotes the number of tokens to predict per generation.""" | |
temperature: Optional[float] = None | |
"""A non-negative float that tunes the degree of randomness in generation.""" | |
top_k: Optional[int] = None | |
"""Number of most likely tokens to consider at each step.""" | |
top_p: Optional[float] = None | |
"""Total probability mass of tokens to consider at each step.""" | |
default_request_timeout: Optional[float] = Field(None, alias="timeout") | |
"""Timeout for requests to Anthropic Completion API.""" | |
# sdk default = 2: https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#retries | |
max_retries: int = 2 | |
"""Number of retries allowed for requests sent to the Anthropic Completion API.""" | |
stop_sequences: Optional[List[str]] = Field(None, alias="stop") | |
"""Default stop sequences.""" | |
anthropic_api_url: Optional[str] = Field(None, alias="base_url") | |
"""Base URL for API requests. Only specify if using a proxy or service emulator. | |
If a value isn't passed in and environment variable ANTHROPIC_BASE_URL is set, value | |
will be read from there. | |
""" | |
anthropic_api_key: Optional[SecretStr] = Field(None, alias="api_key") | |
"""Automatically read from env var `ANTHROPIC_API_KEY` if not provided.""" | |
default_headers: Optional[Mapping[str, str]] = None | |
"""Headers to pass to the Anthropic clients, will be used for every API call.""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
streaming: bool = False | |
"""Whether to use streaming or not.""" | |
stream_usage: bool = True | |
"""Whether to include usage metadata in streaming output. If True, additional | |
message chunks will be generated during the stream including usage metadata. | |
""" | |
def _llm_type(self) -> str: | |
"""Return type of chat model.""" | |
return "anthropic-chat" | |
def lc_secrets(self) -> Dict[str, str]: | |
return {"anthropic_api_key": "ANTHROPIC_API_KEY"} | |
def is_lc_serializable(cls) -> bool: | |
return True | |
def get_lc_namespace(cls) -> List[str]: | |
"""Get the namespace of the langchain object.""" | |
return ["langchain", "chat_models", "anthropic"] | |
def _identifying_params(self) -> Dict[str, Any]: | |
"""Get the identifying parameters.""" | |
return { | |
"model": self.model, | |
"max_tokens": self.max_tokens, | |
"temperature": self.temperature, | |
"top_k": self.top_k, | |
"top_p": self.top_p, | |
"model_kwargs": self.model_kwargs, | |
"streaming": self.streaming, | |
"max_retries": self.max_retries, | |
"default_request_timeout": self.default_request_timeout, | |
} | |
def _get_ls_params( | |
self, stop: Optional[List[str]] = None, **kwargs: Any | |
) -> LangSmithParams: | |
"""Get the parameters used to invoke the model.""" | |
params = self._get_invocation_params(stop=stop, **kwargs) | |
ls_params = LangSmithParams( | |
ls_provider="anthropic", | |
ls_model_name=self.model, | |
ls_model_type="chat", | |
ls_temperature=params.get("temperature", self.temperature), | |
) | |
if ls_max_tokens := params.get("max_tokens", self.max_tokens): | |
ls_params["ls_max_tokens"] = ls_max_tokens | |
if ls_stop := stop or params.get("stop", None): | |
ls_params["ls_stop"] = ls_stop | |
return ls_params | |
def build_extra(cls, values: Dict) -> Dict: | |
extra = values.get("model_kwargs", {}) | |
all_required_field_names = get_pydantic_field_names(cls) | |
values["model_kwargs"] = build_extra_kwargs( | |
extra, values, all_required_field_names | |
) | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
anthropic_api_key = convert_to_secret_str( | |
values.get("anthropic_api_key") or os.environ.get("ANTHROPIC_API_KEY") or "" | |
) | |
values["anthropic_api_key"] = anthropic_api_key | |
api_key = anthropic_api_key.get_secret_value() | |
api_url = ( | |
values.get("anthropic_api_url") | |
or os.environ.get("ANTHROPIC_API_URL") | |
or os.environ.get("ANTHROPIC_BASE_URL") | |
or "https://api.anthropic.com" | |
) | |
values["anthropic_api_url"] = api_url | |
client_params = { | |
"api_key": api_key, | |
"base_url": api_url, | |
"max_retries": values["max_retries"], | |
"default_headers": values.get("default_headers"), | |
} | |
# value <= 0 indicates the param should be ignored. None is a meaningful value | |
# for Anthropic client and treated differently than not specifying the param at | |
# all. | |
if ( | |
values["default_request_timeout"] is None | |
or values["default_request_timeout"] > 0 | |
): | |
client_params["timeout"] = values["default_request_timeout"] | |
values["_client"] = anthropic.Client(**client_params) | |
values["_async_client"] = anthropic.AsyncClient(**client_params) | |
return values | |
def _format_params( | |
self, | |
*, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
**kwargs: Dict, | |
) -> Dict: | |
# get system prompt if any | |
system, formatted_messages = _format_messages(messages) | |
stop_sequences = stop or self.stop_sequences | |
rtn = { | |
"model": self.model, | |
"max_tokens": self.max_tokens, | |
"messages": formatted_messages, | |
"temperature": self.temperature, | |
"top_k": self.top_k, | |
"top_p": self.top_p, | |
"stop_sequences": stop_sequences, | |
"system": system, | |
**self.model_kwargs, | |
**kwargs, | |
} | |
rtn = {k: v for k, v in rtn.items() if v is not None} | |
return rtn | |
def _stream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
*, | |
stream_usage: Optional[bool] = None, | |
**kwargs: Any, | |
) -> Iterator[ChatGenerationChunk]: | |
if stream_usage is None: | |
stream_usage = self.stream_usage | |
params = self._format_params(messages=messages, stop=stop, **kwargs) | |
if _tools_in_params(params): | |
result = self._generate( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
message = result.generations[0].message | |
if isinstance(message, AIMessage) and message.tool_calls is not None: | |
tool_call_chunks = [ | |
{ | |
"name": tool_call["name"], | |
"args": json.dumps(tool_call["args"]), | |
"id": tool_call["id"], | |
"index": idx, | |
} | |
for idx, tool_call in enumerate(message.tool_calls) | |
] | |
message_chunk = AIMessageChunk( | |
content=message.content, | |
tool_call_chunks=tool_call_chunks, # type: ignore[arg-type] | |
usage_metadata=message.usage_metadata, | |
) | |
yield ChatGenerationChunk(message=message_chunk) | |
else: | |
yield cast(ChatGenerationChunk, result.generations[0]) | |
return | |
stream = self._client.messages.create(**params, stream=True) | |
for event in stream: | |
msg = _make_message_chunk_from_anthropic_event( | |
event, stream_usage=stream_usage | |
) | |
if msg is not None: | |
chunk = ChatGenerationChunk(message=msg) | |
if run_manager and isinstance(msg.content, str): | |
run_manager.on_llm_new_token(msg.content, chunk=chunk) | |
yield chunk | |
async def _astream( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
*, | |
stream_usage: Optional[bool] = None, | |
**kwargs: Any, | |
) -> AsyncIterator[ChatGenerationChunk]: | |
if stream_usage is None: | |
stream_usage = self.stream_usage | |
params = self._format_params(messages=messages, stop=stop, **kwargs) | |
if _tools_in_params(params): | |
warnings.warn("stream: Tool use is not yet supported in streaming mode.") | |
result = await self._agenerate( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
message = result.generations[0].message | |
if isinstance(message, AIMessage) and message.tool_calls is not None: | |
tool_call_chunks = [ | |
{ | |
"name": tool_call["name"], | |
"args": json.dumps(tool_call["args"]), | |
"id": tool_call["id"], | |
"index": idx, | |
} | |
for idx, tool_call in enumerate(message.tool_calls) | |
] | |
message_chunk = AIMessageChunk( | |
content=message.content, | |
tool_call_chunks=tool_call_chunks, # type: ignore[arg-type] | |
usage_metadata=message.usage_metadata, | |
) | |
yield ChatGenerationChunk(message=message_chunk) | |
else: | |
yield cast(ChatGenerationChunk, result.generations[0]) | |
return | |
stream = await self._async_client.messages.create(**params, stream=True) | |
async for event in stream: | |
msg = _make_message_chunk_from_anthropic_event( | |
event, stream_usage=stream_usage | |
) | |
if msg is not None: | |
chunk = ChatGenerationChunk(message=msg) | |
if run_manager and isinstance(msg.content, str): | |
await run_manager.on_llm_new_token(msg.content, chunk=chunk) | |
yield chunk | |
def _format_output(self, data: Any, **kwargs: Any) -> ChatResult: | |
data_dict = data.model_dump() | |
content = data_dict["content"] | |
llm_output = { | |
k: v for k, v in data_dict.items() if k not in ("content", "role", "type") | |
} | |
if len(content) == 1 and content[0]["type"] == "text": | |
msg = AIMessage(content=content[0]["text"]) | |
elif any(block["type"] == "tool_use" for block in content): | |
tool_calls = extract_tool_calls(content) | |
msg = AIMessage( | |
content=content, | |
tool_calls=tool_calls, | |
) | |
else: | |
msg = AIMessage(content=content) | |
# Collect token usage | |
msg.usage_metadata = { | |
"input_tokens": data.usage.input_tokens, | |
"output_tokens": data.usage.output_tokens, | |
"total_tokens": data.usage.input_tokens + data.usage.output_tokens, | |
} | |
return ChatResult( | |
generations=[ChatGeneration(message=msg)], | |
llm_output=llm_output, | |
) | |
def _generate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
params = self._format_params(messages=messages, stop=stop, **kwargs) | |
if self.streaming: | |
if _tools_in_params(params): | |
warnings.warn( | |
"stream: Tool use is not yet supported in streaming mode." | |
) | |
else: | |
stream_iter = self._stream( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return generate_from_stream(stream_iter) | |
data = self._client.messages.create(**params) | |
return self._format_output(data, **kwargs) | |
async def _agenerate( | |
self, | |
messages: List[BaseMessage], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> ChatResult: | |
params = self._format_params(messages=messages, stop=stop, **kwargs) | |
if self.streaming: | |
if _tools_in_params(params): | |
warnings.warn( | |
"stream: Tool use is not yet supported in streaming mode." | |
) | |
else: | |
stream_iter = self._astream( | |
messages, stop=stop, run_manager=run_manager, **kwargs | |
) | |
return await agenerate_from_stream(stream_iter) | |
data = await self._async_client.messages.create(**params) | |
return self._format_output(data, **kwargs) | |
def bind_tools( | |
self, | |
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], | |
*, | |
tool_choice: Optional[ | |
Union[Dict[str, str], Literal["any", "auto"], str] | |
] = None, | |
**kwargs: Any, | |
) -> Runnable[LanguageModelInput, BaseMessage]: | |
"""Bind tool-like objects to this chat model. | |
Args: | |
tools: A list of tool definitions to bind to this chat model. | |
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic | |
models, callables, and BaseTools will be automatically converted to | |
their schema dictionary representation. | |
tool_choice: Which tool to require the model to call. | |
Options are: | |
name of the tool (str): calls corresponding tool; | |
"auto" or None: automatically selects a tool (including no tool); | |
"any": force at least one tool to be called; | |
or a dict of the form: | |
{"type": "tool", "name": "tool_name"}, | |
or {"type: "any"}, | |
or {"type: "auto"}; | |
**kwargs: Any additional parameters to bind. | |
Example: | |
.. code-block:: python | |
from langchain_anthropic import ChatAnthropic | |
from langchain_core.pydantic_v1 import BaseModel, Field | |
class GetWeather(BaseModel): | |
'''Get the current weather in a given location''' | |
location: str = Field(..., description="The city and state, e.g. San Francisco, CA") | |
class GetPrice(BaseModel): | |
'''Get the price of a specific product.''' | |
product: str = Field(..., description="The product to look up.") | |
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) | |
llm_with_tools = llm.bind_tools([GetWeather, GetPrice]) | |
llm_with_tools.invoke("what is the weather like in San Francisco",) | |
# -> AIMessage( | |
# content=[ | |
# {'text': '<thinking>\nBased on the user\'s question, the relevant function to call is GetWeather, which requires the "location" parameter.\n\nThe user has directly specified the location as "San Francisco". Since San Francisco is a well known city, I can reasonably infer they mean San Francisco, CA without needing the state specified.\n\nAll the required parameters are provided, so I can proceed with the API call.\n</thinking>', 'type': 'text'}, | |
# {'text': None, 'type': 'tool_use', 'id': 'toolu_01SCgExKzQ7eqSkMHfygvYuu', 'name': 'GetWeather', 'input': {'location': 'San Francisco, CA'}} | |
# ], | |
# response_metadata={'id': 'msg_01GM3zQtoFv8jGQMW7abLnhi', 'model': 'claude-3-opus-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 487, 'output_tokens': 145}}, | |
# id='run-87b1331e-9251-4a68-acef-f0a018b639cc-0' | |
# ) | |
Example — force tool call with tool_choice 'any': | |
.. code-block:: python | |
from langchain_anthropic import ChatAnthropic | |
from langchain_core.pydantic_v1 import BaseModel, Field | |
class GetWeather(BaseModel): | |
'''Get the current weather in a given location''' | |
location: str = Field(..., description="The city and state, e.g. San Francisco, CA") | |
class GetPrice(BaseModel): | |
'''Get the price of a specific product.''' | |
product: str = Field(..., description="The product to look up.") | |
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) | |
llm_with_tools = llm.bind_tools([GetWeather, GetPrice], tool_choice="any") | |
llm_with_tools.invoke("what is the weather like in San Francisco",) | |
Example — force specific tool call with tool_choice '<name_of_tool>': | |
.. code-block:: python | |
from langchain_anthropic import ChatAnthropic | |
from langchain_core.pydantic_v1 import BaseModel, Field | |
class GetWeather(BaseModel): | |
'''Get the current weather in a given location''' | |
location: str = Field(..., description="The city and state, e.g. San Francisco, CA") | |
class GetPrice(BaseModel): | |
'''Get the price of a specific product.''' | |
product: str = Field(..., description="The product to look up.") | |
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) | |
llm_with_tools = llm.bind_tools([GetWeather, GetPrice], tool_choice="GetWeather") | |
llm_with_tools.invoke("what is the weather like in San Francisco",) | |
""" # noqa: E501 | |
formatted_tools = [convert_to_anthropic_tool(tool) for tool in tools] | |
if not tool_choice: | |
pass | |
elif isinstance(tool_choice, dict): | |
kwargs["tool_choice"] = tool_choice | |
elif isinstance(tool_choice, str) and tool_choice in ("any", "auto"): | |
kwargs["tool_choice"] = {"type": tool_choice} | |
elif isinstance(tool_choice, str): | |
kwargs["tool_choice"] = {"type": "tool", "name": tool_choice} | |
else: | |
raise ValueError( | |
f"Unrecognized 'tool_choice' type {tool_choice=}. Expected dict, " | |
f"str, or None." | |
) | |
return self.bind(tools=formatted_tools, **kwargs) | |
def with_structured_output( | |
self, | |
schema: Union[Dict, Type[BaseModel]], | |
*, | |
include_raw: bool = False, | |
**kwargs: Any, | |
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: | |
"""Model wrapper that returns outputs formatted to match the given schema. | |
Args: | |
schema: The output schema as a dict or a Pydantic class. If a Pydantic class | |
then the model output will be an object of that class. If a dict then | |
the model output will be a dict. With a Pydantic class the returned | |
attributes will be validated, whereas with a dict they will not be. | |
include_raw: If False then only the parsed structured output is returned. If | |
an error occurs during model output parsing it will be raised. If True | |
then both the raw model response (a BaseMessage) and the parsed model | |
response will be returned. If an error occurs during output parsing it | |
will be caught and returned as well. The final output is always a dict | |
with keys "raw", "parsed", and "parsing_error". | |
Returns: | |
A Runnable that takes any ChatModel input. The output type depends on | |
include_raw and schema. | |
If include_raw is True then output is a dict with keys: | |
raw: BaseMessage, | |
parsed: Optional[_DictOrPydantic], | |
parsing_error: Optional[BaseException], | |
If include_raw is False and schema is a Dict then the runnable outputs a Dict. | |
If include_raw is False and schema is a Type[BaseModel] then the runnable | |
outputs a BaseModel. | |
Example: Pydantic schema (include_raw=False): | |
.. code-block:: python | |
from langchain_anthropic import ChatAnthropic | |
from langchain_core.pydantic_v1 import BaseModel | |
class AnswerWithJustification(BaseModel): | |
'''An answer to the user question along with justification for the answer.''' | |
answer: str | |
justification: str | |
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) | |
structured_llm = llm.with_structured_output(AnswerWithJustification) | |
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") | |
# -> AnswerWithJustification( | |
# answer='They weigh the same', | |
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' | |
# ) | |
Example: Pydantic schema (include_raw=True): | |
.. code-block:: python | |
from langchain_anthropic import ChatAnthropic | |
from langchain_core.pydantic_v1 import BaseModel | |
class AnswerWithJustification(BaseModel): | |
'''An answer to the user question along with justification for the answer.''' | |
answer: str | |
justification: str | |
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) | |
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) | |
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") | |
# -> { | |
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), | |
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), | |
# 'parsing_error': None | |
# } | |
Example: Dict schema (include_raw=False): | |
.. code-block:: python | |
from langchain_anthropic import ChatAnthropic | |
schema = { | |
"name": "AnswerWithJustification", | |
"description": "An answer to the user question along with justification for the answer.", | |
"input_schema": { | |
"type": "object", | |
"properties": { | |
"answer": {"type": "string"}, | |
"justification": {"type": "string"}, | |
}, | |
"required": ["answer", "justification"] | |
} | |
} | |
llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) | |
structured_llm = llm.with_structured_output(schema) | |
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") | |
# -> { | |
# 'answer': 'They weigh the same', | |
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' | |
# } | |
""" # noqa: E501 | |
llm = self.bind_tools([schema], tool_choice="any") | |
if isinstance(schema, type) and issubclass(schema, BaseModel): | |
output_parser = ToolsOutputParser( | |
first_tool_only=True, pydantic_schemas=[schema] | |
) | |
else: | |
output_parser = ToolsOutputParser(first_tool_only=True, args_only=True) | |
if include_raw: | |
parser_assign = RunnablePassthrough.assign( | |
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None | |
) | |
parser_none = RunnablePassthrough.assign(parsed=lambda _: None) | |
parser_with_fallback = parser_assign.with_fallbacks( | |
[parser_none], exception_key="parsing_error" | |
) | |
return RunnableMap(raw=llm) | parser_with_fallback | |
else: | |
return llm | output_parser | |
class AnthropicTool(TypedDict): | |
name: str | |
description: str | |
input_schema: Dict[str, Any] | |
def convert_to_anthropic_tool( | |
tool: Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool], | |
) -> AnthropicTool: | |
# already in Anthropic tool format | |
if isinstance(tool, dict) and all( | |
k in tool for k in ("name", "description", "input_schema") | |
): | |
return AnthropicTool(tool) # type: ignore | |
else: | |
formatted = convert_to_openai_tool(tool)["function"] | |
return AnthropicTool( | |
name=formatted["name"], | |
description=formatted["description"], | |
input_schema=formatted["parameters"], | |
) | |
def _tools_in_params(params: dict) -> bool: | |
return "tools" in params or ( | |
"extra_body" in params and params["extra_body"].get("tools") | |
) | |
class _AnthropicToolUse(TypedDict): | |
type: Literal["tool_use"] | |
name: str | |
input: dict | |
id: str | |
def _lc_tool_calls_to_anthropic_tool_use_blocks( | |
tool_calls: List[ToolCall], | |
) -> List[_AnthropicToolUse]: | |
blocks = [] | |
for tool_call in tool_calls: | |
blocks.append( | |
_AnthropicToolUse( | |
type="tool_use", | |
name=tool_call["name"], | |
input=tool_call["args"], | |
id=cast(str, tool_call["id"]), | |
) | |
) | |
return blocks | |
def _make_message_chunk_from_anthropic_event( | |
event: anthropic.types.RawMessageStreamEvent, | |
*, | |
stream_usage: bool = True, | |
) -> Optional[AIMessageChunk]: | |
"""Convert Anthropic event to AIMessageChunk. | |
Note that not all events will result in a message chunk. In these cases | |
we return None. | |
""" | |
message_chunk: Optional[AIMessageChunk] = None | |
if event.type == "message_start" and stream_usage: | |
input_tokens = event.message.usage.input_tokens | |
message_chunk = AIMessageChunk( | |
content="", | |
usage_metadata=UsageMetadata( | |
input_tokens=input_tokens, | |
output_tokens=0, | |
total_tokens=input_tokens, | |
), | |
) | |
# See https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/lib/streaming/_messages.py # noqa: E501 | |
elif event.type == "content_block_delta" and event.delta.type == "text_delta": | |
text = event.delta.text | |
message_chunk = AIMessageChunk(content=text) | |
elif event.type == "message_delta" and stream_usage: | |
output_tokens = event.usage.output_tokens | |
message_chunk = AIMessageChunk( | |
content="", | |
usage_metadata=UsageMetadata( | |
input_tokens=0, | |
output_tokens=output_tokens, | |
total_tokens=output_tokens, | |
), | |
) | |
else: | |
pass | |
return message_chunk | |
class ChatAnthropicMessages(ChatAnthropic): | |
pass | |