anpigon's picture
add langchain docs
ed4d993
from itertools import islice
from typing import Any, Iterator, List, Optional
from ai21.models import EmbedType
from langchain_core.embeddings import Embeddings
from langchain_ai21.ai21_base import AI21Base
_DEFAULT_BATCH_SIZE = 128
def _split_texts_into_batches(texts: List[str], batch_size: int) -> Iterator[List[str]]:
texts_itr = iter(texts)
return iter(lambda: list(islice(texts_itr, batch_size)), [])
class AI21Embeddings(Embeddings, AI21Base):
"""AI21 Embeddings embedding model.
To use, you should have the 'AI21_API_KEY' environment variable set
or pass as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_ai21 import AI21Embeddings
embeddings = AI21Embeddings()
query_result = embeddings.embed_query("Hello embeddings world!")
"""
batch_size: int = _DEFAULT_BATCH_SIZE
"""Maximum number of texts to embed in each batch"""
def embed_documents(
self,
texts: List[str],
*,
batch_size: Optional[int] = None,
**kwargs: Any,
) -> List[List[float]]:
"""Embed search docs."""
return self._send_embeddings(
texts=texts,
batch_size=batch_size or self.batch_size,
embed_type=EmbedType.SEGMENT,
**kwargs,
)
def embed_query(
self,
text: str,
*,
batch_size: Optional[int] = None,
**kwargs: Any,
) -> List[float]:
"""Embed query text."""
return self._send_embeddings(
texts=[text],
batch_size=batch_size or self.batch_size,
embed_type=EmbedType.QUERY,
**kwargs,
)[0]
def _send_embeddings(
self, texts: List[str], *, batch_size: int, embed_type: EmbedType, **kwargs: Any
) -> List[List[float]]:
chunks = _split_texts_into_batches(texts, batch_size)
responses = [
self.client.embed.create(
texts=chunk,
type=embed_type,
**kwargs,
)
for chunk in chunks
]
return [
result.embedding for response in responses for result in response.results
]