Spaces:
Runtime error
Runtime error
""" This file is for LLMRails Embedding """ | |
from typing import Dict, List, Optional | |
import requests | |
from langchain_core.embeddings import Embeddings | |
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
class LLMRailsEmbeddings(BaseModel, Embeddings): | |
"""LLMRails embedding models. | |
To use, you should have the environment | |
variable ``LLM_RAILS_API_KEY`` set with your API key or pass it | |
as a named parameter to the constructor. | |
Model can be one of ["embedding-english-v1","embedding-multi-v1"] | |
Example: | |
.. code-block:: python | |
from langchain_community.embeddings import LLMRailsEmbeddings | |
cohere = LLMRailsEmbeddings( | |
model="embedding-english-v1", api_key="my-api-key" | |
) | |
""" | |
model: str = "embedding-english-v1" | |
"""Model name to use.""" | |
api_key: Optional[SecretStr] = None | |
"""LLMRails API key.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key exists in environment.""" | |
api_key = convert_to_secret_str( | |
get_from_dict_or_env(values, "api_key", "LLM_RAILS_API_KEY") | |
) | |
values["api_key"] = api_key | |
return values | |
def embed_documents(self, texts: List[str]) -> List[List[float]]: | |
"""Call out to Cohere's embedding endpoint. | |
Args: | |
texts: The list of texts to embed. | |
Returns: | |
List of embeddings, one for each text. | |
""" | |
response = requests.post( | |
"https://api.llmrails.com/v1/embeddings", | |
headers={"X-API-KEY": self.api_key.get_secret_value()}, # type: ignore[union-attr] | |
json={"input": texts, "model": self.model}, | |
timeout=60, | |
) | |
return [item["embedding"] for item in response.json()["data"]] | |
def embed_query(self, text: str) -> List[float]: | |
"""Call out to Cohere's embedding endpoint. | |
Args: | |
text: The text to embed. | |
Returns: | |
Embeddings for the text. | |
""" | |
return self.embed_documents([text])[0] | |