Spaces:
Sleeping
Sleeping
langchain-qa-bot
/
docs
/langchain
/templates
/openai-functions-agent
/openai_functions_agent
/agent.py
from typing import List, Tuple | |
from langchain.agents import AgentExecutor | |
from langchain.agents.format_scratchpad import format_to_openai_function_messages | |
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser | |
from langchain_community.chat_models import ChatOpenAI | |
from langchain_community.tools.convert_to_openai import format_tool_to_openai_function | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper | |
from langchain_core.messages import AIMessage, HumanMessage | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain_core.pydantic_v1 import BaseModel, Field | |
# Create the tool | |
search = TavilySearchAPIWrapper() | |
description = """"A search engine optimized for comprehensive, accurate, \ | |
and trusted results. Useful for when you need to answer questions \ | |
about current events or about recent information. \ | |
Input should be a search query. \ | |
If the user is asking about something that you don't know about, \ | |
you should probably use this tool to see if that can provide any information.""" | |
tavily_tool = TavilySearchResults(api_wrapper=search, description=description) | |
tools = [tavily_tool] | |
llm = ChatOpenAI(temperature=0) | |
assistant_system_message = """You are a helpful assistant. \ | |
Use tools (only if necessary) to best answer the users questions.""" | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", assistant_system_message), | |
MessagesPlaceholder(variable_name="chat_history"), | |
("user", "{input}"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
] | |
) | |
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools]) | |
def _format_chat_history(chat_history: List[Tuple[str, str]]): | |
buffer = [] | |
for human, ai in chat_history: | |
buffer.append(HumanMessage(content=human)) | |
buffer.append(AIMessage(content=ai)) | |
return buffer | |
agent = ( | |
{ | |
"input": lambda x: x["input"], | |
"chat_history": lambda x: _format_chat_history(x["chat_history"]), | |
"agent_scratchpad": lambda x: format_to_openai_function_messages( | |
x["intermediate_steps"] | |
), | |
} | |
| prompt | |
| llm_with_tools | |
| OpenAIFunctionsAgentOutputParser() | |
) | |
class AgentInput(BaseModel): | |
input: str | |
chat_history: List[Tuple[str, str]] = Field( | |
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}} | |
) | |
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types( | |
input_type=AgentInput | |
) | |