Spaces:
Sleeping
Sleeping
import os | |
from typing import List, Tuple | |
from langchain.agents import AgentExecutor | |
from langchain.agents.format_scratchpad import format_to_openai_function_messages | |
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser | |
from langchain_community.chat_models import ChatOpenAI | |
from langchain_community.tools.convert_to_openai import format_tool_to_openai_function | |
from langchain_community.tools.gmail import ( | |
GmailCreateDraft, | |
GmailGetMessage, | |
GmailGetThread, | |
GmailSearch, | |
GmailSendMessage, | |
) | |
from langchain_community.tools.gmail.utils import build_resource_service | |
from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper | |
from langchain_core.messages import AIMessage, HumanMessage | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain_core.pydantic_v1 import BaseModel, Field | |
from langchain_core.tools import tool | |
def search_engine(query: str, max_results: int = 5) -> str: | |
""""A search engine optimized for comprehensive, accurate, \ | |
and trusted results. Useful for when you need to answer questions \ | |
about current events or about recent information. \ | |
Input should be a search query. \ | |
If the user is asking about something that you don't know about, \ | |
you should probably use this tool to see if that can provide any information.""" | |
return TavilySearchAPIWrapper().results(query, max_results=max_results) | |
# Create the tools | |
tools = [ | |
GmailCreateDraft(), | |
GmailGetMessage(), | |
GmailGetThread(), | |
GmailSearch(), | |
search_engine, | |
] | |
if os.environ.get("GMAIL_AGENT_ENABLE_SEND") == "true": | |
tools.append(GmailSendMessage()) | |
current_user = ( | |
build_resource_service().users().getProfile(userId="me").execute()["emailAddress"] | |
) | |
assistant_system_message = """You are a helpful assistant aiding a user with their \ | |
emails. Use tools (only if necessary) to best answer \ | |
the users questions.\n\nCurrent user: {user}""" | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", assistant_system_message), | |
MessagesPlaceholder(variable_name="chat_history"), | |
("user", "{input}"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
] | |
).partial(user=current_user) | |
llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0) | |
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools]) | |
def _format_chat_history(chat_history: List[Tuple[str, str]]): | |
buffer = [] | |
for human, ai in chat_history: | |
buffer.append(HumanMessage(content=human)) | |
buffer.append(AIMessage(content=ai)) | |
return buffer | |
agent = ( | |
{ | |
"input": lambda x: x["input"], | |
"chat_history": lambda x: _format_chat_history(x["chat_history"]), | |
"agent_scratchpad": lambda x: format_to_openai_function_messages( | |
x["intermediate_steps"] | |
), | |
} | |
| prompt | |
| llm_with_tools | |
| OpenAIFunctionsAgentOutputParser() | |
) | |
class AgentInput(BaseModel): | |
input: str | |
chat_history: List[Tuple[str, str]] = Field( | |
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}} | |
) | |
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types( | |
input_type=AgentInput | |
) | |