|
import torch |
|
from anonymous_demo.network.sa_encoder import Encoder |
|
from torch import nn |
|
|
|
|
|
class LSA(nn.Module): |
|
def __init__(self, bert, opt): |
|
super(LSA, self).__init__() |
|
self.opt = opt |
|
|
|
self.encoder = Encoder(bert.config, opt) |
|
self.encoder_left = Encoder(bert.config, opt) |
|
self.encoder_right = Encoder(bert.config, opt) |
|
self.linear_window_3h = nn.Linear(opt.embed_dim * 3, opt.embed_dim) |
|
self.linear_window_2h = nn.Linear(opt.embed_dim * 2, opt.embed_dim) |
|
self.eta1 = nn.Parameter(torch.tensor(self.opt.eta, dtype=torch.float)) |
|
self.eta2 = nn.Parameter(torch.tensor(self.opt.eta, dtype=torch.float)) |
|
|
|
def forward( |
|
self, |
|
global_context_features, |
|
spc_mask_vec, |
|
lcf_matrix, |
|
left_lcf_matrix, |
|
right_lcf_matrix, |
|
): |
|
masked_global_context_features = torch.mul( |
|
spc_mask_vec, global_context_features |
|
) |
|
|
|
|
|
lcf_features = torch.mul(global_context_features, lcf_matrix) |
|
lcf_features = self.encoder(lcf_features) |
|
|
|
left_lcf_features = torch.mul(masked_global_context_features, left_lcf_matrix) |
|
left_lcf_features = self.encoder_left(left_lcf_features) |
|
|
|
right_lcf_features = torch.mul(masked_global_context_features, right_lcf_matrix) |
|
right_lcf_features = self.encoder_right(right_lcf_features) |
|
|
|
if "lr" == self.opt.window or "rl" == self.opt.window: |
|
if self.eta1 <= 0 and self.opt.eta != -1: |
|
torch.nn.init.uniform_(self.eta1) |
|
print("reset eta1 to: {}".format(self.eta1.item())) |
|
if self.eta2 <= 0 and self.opt.eta != -1: |
|
torch.nn.init.uniform_(self.eta2) |
|
print("reset eta2 to: {}".format(self.eta2.item())) |
|
if self.opt.eta >= 0: |
|
cat_features = torch.cat( |
|
( |
|
lcf_features, |
|
self.eta1 * left_lcf_features, |
|
self.eta2 * right_lcf_features, |
|
), |
|
-1, |
|
) |
|
else: |
|
cat_features = torch.cat( |
|
(lcf_features, left_lcf_features, right_lcf_features), -1 |
|
) |
|
sent_out = self.linear_window_3h(cat_features) |
|
elif "l" == self.opt.window: |
|
sent_out = self.linear_window_2h( |
|
torch.cat((lcf_features, self.eta1 * left_lcf_features), -1) |
|
) |
|
elif "r" == self.opt.window: |
|
sent_out = self.linear_window_2h( |
|
torch.cat((lcf_features, self.eta2 * right_lcf_features), -1) |
|
) |
|
else: |
|
raise KeyError("Invalid parameter:", self.opt.window) |
|
|
|
return sent_out |
|
|