anonymous8
update
d65ddc0
raw
history blame
8.21 kB
import json
import os
import pickle
import signal
import threading
import time
import zipfile
import gdown
import numpy as np
import requests
import torch
import tqdm
from autocuda import auto_cuda, auto_cuda_name
from findfile import find_files, find_cwd_file, find_file
from termcolor import colored
from functools import wraps
from update_checker import parse_version
from anonymous_demo import __version__
def save_args(config, save_path):
f = open(os.path.join(save_path), mode="w", encoding="utf8")
for arg in config.args:
if config.args_call_count[arg]:
f.write("{}: {}\n".format(arg, config.args[arg]))
f.close()
def print_args(config, logger=None, mode=0):
args = [key for key in sorted(config.args.keys())]
for arg in args:
if logger:
logger.info(
"{0}:{1}\t-->\tCalling Count:{2}".format(
arg, config.args[arg], config.args_call_count[arg]
)
)
else:
print(
"{0}:{1}\t-->\tCalling Count:{2}".format(
arg, config.args[arg], config.args_call_count[arg]
)
)
def check_and_fix_labels(label_set: set, label_name, all_data, opt):
if "-100" in label_set:
label_to_index = {
origin_label: int(idx) - 1 if origin_label != "-100" else -100
for origin_label, idx in zip(sorted(label_set), range(len(label_set)))
}
index_to_label = {
int(idx) - 1 if origin_label != "-100" else -100: origin_label
for origin_label, idx in zip(sorted(label_set), range(len(label_set)))
}
else:
label_to_index = {
origin_label: int(idx)
for origin_label, idx in zip(sorted(label_set), range(len(label_set)))
}
index_to_label = {
int(idx): origin_label
for origin_label, idx in zip(sorted(label_set), range(len(label_set)))
}
if "index_to_label" not in opt.args:
opt.index_to_label = index_to_label
opt.label_to_index = label_to_index
if opt.index_to_label != index_to_label:
opt.index_to_label.update(index_to_label)
opt.label_to_index.update(label_to_index)
num_label = {l: 0 for l in label_set}
num_label["Sum"] = len(all_data)
for item in all_data:
try:
num_label[item[label_name]] += 1
item[label_name] = label_to_index[item[label_name]]
except Exception as e:
# print(e)
num_label[item.polarity] += 1
item.polarity = label_to_index[item.polarity]
print("Dataset Label Details: {}".format(num_label))
def check_and_fix_IOB_labels(label_map, opt):
index_to_IOB_label = {
int(label_map[origin_label]): origin_label for origin_label in label_map
}
opt.index_to_IOB_label = index_to_IOB_label
def get_device(auto_device):
if isinstance(auto_device, str) and auto_device == "allcuda":
device = "cuda"
elif isinstance(auto_device, str):
device = auto_device
elif isinstance(auto_device, bool):
device = auto_cuda() if auto_device else "cpu"
else:
device = auto_cuda()
try:
torch.device(device)
except RuntimeError as e:
print(
colored("Device assignment error: {}, redirect to CPU".format(e), "red")
)
device = "cpu"
device_name = auto_cuda_name()
return device, device_name
def _load_word_vec(path, word2idx=None, embed_dim=300):
fin = open(path, "r", encoding="utf-8", newline="\n", errors="ignore")
word_vec = {}
for line in tqdm.tqdm(fin.readlines(), postfix="Loading embedding file..."):
tokens = line.rstrip().split()
word, vec = " ".join(tokens[:-embed_dim]), tokens[-embed_dim:]
if word in word2idx.keys():
word_vec[word] = np.asarray(vec, dtype="float32")
return word_vec
def build_embedding_matrix(word2idx, embed_dim, dat_fname, opt):
if not os.path.exists("run"):
os.makedirs("run")
embed_matrix_path = "run/{}".format(os.path.join(opt.dataset_name, dat_fname))
if os.path.exists(embed_matrix_path):
print(
colored(
"Loading cached embedding_matrix from {} (Please remove all cached files if there is any problem!)".format(
embed_matrix_path
),
"green",
)
)
embedding_matrix = pickle.load(open(embed_matrix_path, "rb"))
else:
glove_path = prepare_glove840_embedding(embed_matrix_path)
embedding_matrix = np.zeros((len(word2idx) + 2, embed_dim))
word_vec = _load_word_vec(glove_path, word2idx=word2idx, embed_dim=embed_dim)
for word, i in tqdm.tqdm(
word2idx.items(),
postfix=colored("Building embedding_matrix {}".format(dat_fname), "yellow"),
):
vec = word_vec.get(word)
if vec is not None:
embedding_matrix[i] = vec
pickle.dump(embedding_matrix, open(embed_matrix_path, "wb"))
return embedding_matrix
def pad_and_truncate(
sequence, maxlen, dtype="int64", padding="post", truncating="post", value=0
):
x = (np.ones(maxlen) * value).astype(dtype)
if truncating == "pre":
trunc = sequence[-maxlen:]
else:
trunc = sequence[:maxlen]
trunc = np.asarray(trunc, dtype=dtype)
if padding == "post":
x[: len(trunc)] = trunc
else:
x[-len(trunc) :] = trunc
return x
class TransformerConnectionError(ValueError):
def __init__(self):
pass
def retry(f):
@wraps(f)
def decorated(*args, **kwargs):
count = 5
while count:
try:
return f(*args, **kwargs)
except (
TransformerConnectionError,
requests.exceptions.RequestException,
requests.exceptions.ConnectionError,
requests.exceptions.HTTPError,
requests.exceptions.ConnectTimeout,
requests.exceptions.ProxyError,
requests.exceptions.SSLError,
requests.exceptions.BaseHTTPError,
) as e:
print(colored("Training Exception: {}, will retry later".format(e)))
time.sleep(60)
count -= 1
return decorated
def save_json(dic, save_path):
if isinstance(dic, str):
dic = eval(dic)
with open(save_path, "w", encoding="utf-8") as f:
# f.write(str(dict))
str_ = json.dumps(dic, ensure_ascii=False)
f.write(str_)
def load_json(save_path):
with open(save_path, "r", encoding="utf-8") as f:
data = f.readline().strip()
print(type(data), data)
dic = json.loads(data)
return dic
def init_optimizer(optimizer):
optimizers = {
"adadelta": torch.optim.Adadelta, # default lr=1.0
"adagrad": torch.optim.Adagrad, # default lr=0.01
"adam": torch.optim.Adam, # default lr=0.001
"adamax": torch.optim.Adamax, # default lr=0.002
"asgd": torch.optim.ASGD, # default lr=0.01
"rmsprop": torch.optim.RMSprop, # default lr=0.01
"sgd": torch.optim.SGD,
"adamw": torch.optim.AdamW,
torch.optim.Adadelta: torch.optim.Adadelta, # default lr=1.0
torch.optim.Adagrad: torch.optim.Adagrad, # default lr=0.01
torch.optim.Adam: torch.optim.Adam, # default lr=0.001
torch.optim.Adamax: torch.optim.Adamax, # default lr=0.002
torch.optim.ASGD: torch.optim.ASGD, # default lr=0.01
torch.optim.RMSprop: torch.optim.RMSprop, # default lr=0.01
torch.optim.SGD: torch.optim.SGD,
torch.optim.AdamW: torch.optim.AdamW,
}
if optimizer in optimizers:
return optimizers[optimizer]
elif hasattr(torch.optim, optimizer.__name__):
return optimizer
else:
raise KeyError(
"Unsupported optimizer: {}. Please use string or the optimizer objects in torch.optim as your optimizer".format(
optimizer
)
)