anonymous8
update
d65ddc0
raw
history blame
993 Bytes
import numpy
import torch
import torch.nn as nn
class LCF_Pooler(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states, lcf_vec):
device = hidden_states.device
lcf_vec = lcf_vec.detach().cpu().numpy()
pooled_output = numpy.zeros(
(hidden_states.shape[0], hidden_states.shape[2]), dtype=numpy.float32
)
hidden_states = hidden_states.detach().cpu().numpy()
for i, vec in enumerate(lcf_vec):
lcf_ids = [j for j in range(len(vec)) if sum(vec[j] - 1.0) == 0]
pooled_output[i] = hidden_states[i][lcf_ids[len(lcf_ids) // 2]]
pooled_output = torch.Tensor(pooled_output).to(device)
pooled_output = self.dense(pooled_output)
pooled_output = self.activation(pooled_output)
return pooled_output