anonymous8/RPD-Demo
initial commit
4943752
raw
history blame
4.92 kB
"""
HuggingFace Model Wrapper
--------------------------
"""
import torch
import transformers
import textattack
from textattack.models.helpers import T5ForTextToText
from textattack.models.tokenizers import T5Tokenizer
from .pytorch_model_wrapper import PyTorchModelWrapper
torch.cuda.empty_cache()
class HuggingFaceModelWrapper(PyTorchModelWrapper):
"""Loads a HuggingFace ``transformers`` model and tokenizer."""
def __init__(self, model, tokenizer):
assert isinstance(
model, (transformers.PreTrainedModel, T5ForTextToText)
), f"`model` must be of type `transformers.PreTrainedModel`, but got type {type(model)}."
assert isinstance(
tokenizer,
(
transformers.PreTrainedTokenizer,
transformers.PreTrainedTokenizerFast,
T5Tokenizer,
),
), f"`tokenizer` must of type `transformers.PreTrainedTokenizer` or `transformers.PreTrainedTokenizerFast`, but got type {type(tokenizer)}."
self.model = model
self.tokenizer = tokenizer
def __call__(self, text_input_list):
"""Passes inputs to HuggingFace models as keyword arguments.
(Regular PyTorch ``nn.Module`` models typically take inputs as
positional arguments.)
"""
# Default max length is set to be int(1e30), so we force 512 to enable batching.
max_length = (
512
if self.tokenizer.model_max_length == int(1e30)
else self.tokenizer.model_max_length
)
inputs_dict = self.tokenizer(
text_input_list,
add_special_tokens=True,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
model_device = next(self.model.parameters()).device
inputs_dict.to(model_device)
with torch.no_grad():
outputs = self.model(**inputs_dict)
if isinstance(outputs[0], str):
# HuggingFace sequence-to-sequence models return a list of
# string predictions as output. In this case, return the full
# list of outputs.
return outputs
else:
# HuggingFace classification models return a tuple as output
# where the first item in the tuple corresponds to the list of
# scores for each input.
return outputs.logits
def get_grad(self, text_input):
"""Get gradient of loss with respect to input tokens.
Args:
text_input (str): input string
Returns:
Dict of ids, tokens, and gradient as numpy array.
"""
if isinstance(self.model, textattack.models.helpers.T5ForTextToText):
raise NotImplementedError(
"`get_grads` for T5FotTextToText has not been implemented yet."
)
self.model.train()
embedding_layer = self.model.get_input_embeddings()
original_state = embedding_layer.weight.requires_grad
embedding_layer.weight.requires_grad = True
emb_grads = []
def grad_hook(module, grad_in, grad_out):
emb_grads.append(grad_out[0])
emb_hook = embedding_layer.register_backward_hook(grad_hook)
self.model.zero_grad()
model_device = next(self.model.parameters()).device
input_dict = self.tokenizer(
[text_input],
add_special_tokens=True,
return_tensors="pt",
padding="max_length",
truncation=True,
)
input_dict.to(model_device)
predictions = self.model(**input_dict).logits
try:
labels = predictions.argmax(dim=1)
loss = self.model(**input_dict, labels=labels)[0]
except TypeError:
raise TypeError(
f"{type(self.model)} class does not take in `labels` to calculate loss. "
"One cause for this might be if you instantiatedyour model using `transformer.AutoModel` "
"(instead of `transformers.AutoModelForSequenceClassification`)."
)
loss.backward()
# grad w.r.t to word embeddings
grad = emb_grads[0][0].cpu().numpy()
embedding_layer.weight.requires_grad = original_state
emb_hook.remove()
self.model.eval()
output = {"ids": input_dict["input_ids"], "gradient": grad}
return output
def _tokenize(self, inputs):
"""Helper method that for `tokenize`
Args:
inputs (list[str]): list of input strings
Returns:
tokens (list[list[str]]): List of list of tokens as strings
"""
return [
self.tokenizer.convert_ids_to_tokens(
self.tokenizer([x], truncation=True)["input_ids"][0]
)
for x in inputs
]