anonymous8/RPD-Demo
initial commit
4943752
raw
history blame
3.69 kB
"""
CoLA for Grammaticality
--------------------------
"""
import lru
import nltk
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from textattack.constraints import Constraint
from textattack.models.wrappers import HuggingFaceModelWrapper
class COLA(Constraint):
"""Constrains an attack to text that has a similar number of linguistically
accecptable sentences as the original text. Linguistic acceptability is
determined by a model pre-trained on the `CoLA dataset <https://nyu-
mll.github.io/CoLA/>`_. By default a BERT model is used, see the `pre-
trained models README <https://github.com/QData/TextAttack/tree/master/
textattack/models>`_ for a full list of available models or provide your
own model from the huggingface model hub.
Args:
max_diff (float or int): The absolute (if int or greater than or equal to 1) or percent (if float and less than 1)
maximum difference allowed between the number of valid sentences in the reference
text and the number of valid sentences in the attacked text.
model_name (str): The name of the pre-trained model to use for classification. The model must be in huggingface model hub.
compare_against_original (bool): If `True`, compare against the original text.
Otherwise, compare against the most recent text.
"""
def __init__(
self,
max_diff,
model_name="textattack/bert-base-uncased-CoLA",
compare_against_original=True,
):
super().__init__(compare_against_original)
if not isinstance(max_diff, float) and not isinstance(max_diff, int):
raise TypeError("max_diff must be a float or int")
if max_diff < 0.0:
raise ValueError("max_diff must be a value greater or equal to than 0.0")
self.max_diff = max_diff
self.model_name = model_name
self._reference_score_cache = lru.LRU(2**10)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = HuggingFaceModelWrapper(model, tokenizer)
def clear_cache(self):
self._reference_score_cache.clear()
def _check_constraint(self, transformed_text, reference_text):
if reference_text not in self._reference_score_cache:
# Split the text into sentences before predicting validity
reference_sentences = nltk.sent_tokenize(reference_text.text)
# A label of 1 indicates the sentence is valid
num_valid = self.model(reference_sentences).argmax(axis=1).sum()
self._reference_score_cache[reference_text] = num_valid
sentences = nltk.sent_tokenize(transformed_text.text)
predictions = self.model(sentences)
num_valid = predictions.argmax(axis=1).sum()
reference_score = self._reference_score_cache[reference_text]
if isinstance(self.max_diff, int) or self.max_diff >= 1:
threshold = reference_score - self.max_diff
else:
threshold = reference_score - (reference_score * self.max_diff)
if num_valid < threshold:
return False
return True
def extra_repr_keys(self):
return [
"max_diff",
"model_name",
] + super().extra_repr_keys()
def __getstate__(self):
state = self.__dict__.copy()
state["_reference_score_cache"] = self._reference_score_cache.get_size()
return state
def __setstate__(self, state):
self.__dict__ = state
self._reference_score_cache = lru.LRU(state["_reference_score_cache"])