TEDM-demo / app.py
anonymous2023-21's picture
Update app.py
375b5f5
raw
history blame
8.5 kB
import numpy as np
import gradio as gr
from PIL import Image
import torch
from torch import nn
from einops.layers.torch import Rearrange
from torchvision import transforms
from models.unet_model import Unet
from models.datasetDM_model import DatasetDM
from skimage import measure, segmentation
import cv2
from tqdm import tqdm
from einops import repeat
img_size = 128
font = cv2.FONT_HERSHEY_SIMPLEX
## %%
def load_img(img_file):
# assert type of input
if isinstance(img_file, np.ndarray):
img = torch.Tensor(img_file).float()
# make sure img is between 0 and 1
if img.max() > 1:
img /= 255
# resize
img = transforms.Resize(img_size)(img)
elif isinstance(img_file, str):
img = Image.open(img_file).convert('L').resize((img_size, img_size))
img = transforms.ToTensor()(img).float()
elif isinstance(img_file, Image.Image):
img = img_file.convert('L').resize((img_size, img_size))
img = transforms.ToTensor()(img).float()
else:
raise TypeError("Input must be a numpy array, PIL image, or filepath")
if len(img.shape) == 2:
img = img[None, None]
elif len(img.shape) == 3:
img = img[None]
else:
raise ValueError("Input must be a 2D or 3D array")
return img
def predict_baseline(img, checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu"))
config = checkpoint["config"]
baseline = Unet(**vars(config))
baseline.load_state_dict(checkpoint["model_state_dict"])
baseline.eval()
return (torch.sigmoid(baseline(img)) > .5).float().squeeze().numpy()
def predict_LEDM(img, checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu"))
config = checkpoint["config"]
config.verbose = False
LEDM = DatasetDM(config)
LEDM.load_state_dict(checkpoint["model_state_dict"])
LEDM.eval()
return (torch.sigmoid(LEDM(img)) > .5).float().squeeze().numpy()
def predict_TEDM(img, checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu"))
config = checkpoint["config"]
config.verbose = False
TEDM = DatasetDM(config)
TEDM.classifier = nn.Sequential(
Rearrange('b (step act) h w -> (b step) act h w', step=len(TEDM.steps)),
nn.Conv2d(960, 128, 1),
nn.ReLU(),
nn.BatchNorm2d(128),
nn.Conv2d(128, 32, 1),
nn.ReLU(),
nn.BatchNorm2d(32),
nn.Conv2d(32, 1, config.out_channels)
)
TEDM.load_state_dict(checkpoint["model_state_dict"])
TEDM.eval()
return (torch.sigmoid(TEDM(img)).mean(0) > .5).float().squeeze().numpy()
predictors = {'Baseline': predict_baseline,
'Global CL': predict_baseline,
'Global & Local CL': predict_baseline,
'LEDM': predict_LEDM,
'LEDMe': predict_LEDM,
'TEDM': predict_TEDM}
model_folders = {
'Baseline': 'baseline',
'Global CL': 'global_finetune',
'Global & Local CL': 'glob_loc_finetune',
'LEDM': 'LEDM',
'LEDMe': 'LEDMe',
'TEDM': 'TEDM'
}
def postprocess(pred, img):
all_labels = measure.label(pred, background=0)
_, cn = np.unique(all_labels, return_counts=True)
# find the two largest connected components that are not the background
if len(cn) >= 3:
lungs = np.argsort(cn[1:])[-2:] + 1
all_labels[(all_labels!=lungs[0]) & (all_labels!=lungs[1])] = 0
all_labels[(all_labels==lungs[0]) | (all_labels==lungs[1])] = 1
# put all_labels into a cv2 object
if len(cn) > 1:
img = segmentation.mark_boundaries(img, all_labels, color=(1,0,0), mode='outer', background_label=0)
else:
img = repeat(img, 'h w -> h w c', c=3)
return img
def predict(img_file, models:list, training_sizes:list, seg_img=False, progress=gr.Progress()):
max_progress = len(models) * len(training_sizes)
n_progress = 0
progress((n_progress, max_progress), desc="Starting")
img = load_img(img_file)
print(img.shape)
preds = []
# sorting models so that they show as baseline - LEDM - LEDMe - TEDM
models = sorted(models, key=lambda x: 0 if x == 'Baseline' else 1 if x == 'Global CL' else 2 if x == 'Global & Local CL' else 3 if x == 'LEDM' else 4 if x == 'LEDMe' else 5)
for model in models:
print(model)
model_preds = []
for training_size in sorted(training_sizes):
#if n_progress < max_progress:
progress((n_progress, max_progress) , desc=f"Predicting {model} {training_size}")
n_progress += 1
print(training_size)
out = predictors[model](img, f"logs/{model_folders[model]}/{training_size}/best_model.pt")
writing_colour = (.5,.5,.5)
if seg_img:
out = postprocess(out, img.squeeze().numpy())
writing_colour = (1,1,1)
out = cv2.putText(np.array(out),f"{model} {training_size}",(5,125), font, .5, writing_colour,1, cv2.LINE_AA)
#ImageDraw.Draw(out).text((0,128), f"{model} {training_size}", fill=(255,0,0))
model_preds.append(np.asarray(out))
preds.append(np.concatenate(model_preds, axis=1))
prediction = np.concatenate(preds, axis=0)
if (prediction.shape[1] <=128*2):
pad = (330 - prediction.shape[1])//2
if len(prediction.shape) == 2:
prediction = np.pad(prediction, ((0,0), (pad, pad)), 'constant', constant_values=1)
else:
prediction = np.pad(prediction, ((0,0), (pad, pad), (0,0)), 'constant', constant_values=1)
return prediction
## %%
input = gr.Image( label="Chest X-ray", shape=(img_size, img_size), type="pil")
output = gr.Image(label="Segmentation", shape=(img_size, img_size))
## %%
demo = gr.Interface(
fn=predict,
inputs=[input,
gr.CheckboxGroup(["Baseline", "Global CL", "Global & Local CL", "LEDM", "LEDMe", "TEDM"], label="Model", value=["Baseline", "LEDM", "LEDMe", "TEDM"]),
gr.CheckboxGroup([1,3,6,12,197], label="Training size", value=[1,3,6,12,197]),
gr.Checkbox(label="Show masked image (otherwise show binary segmentation)", value=True),],
outputs=output,
examples = [
['img_examples/NIH_0006.png'],
['img_examples/NIH_0076.png'],
["img_examples/00016568_041.png"],
['img_examples/NIH_0024.png'],
['img_examples/00015548_000.png'],
['img_examples/NIH_0019.png'],
['img_examples/NIH_0094.png'],
['img_examples/NIH_0051.png'],
['img_examples/NIH_0012.png'],
['img_examples/NIH_0014.png'],
['img_examples/NIH_0055.png'],
['img_examples/NIH_0035.png'],
],
title="Chest X-ray Segmentation with TEDM.",
description="""<img src="file/img_examples/TEDM_n_LEDM.drawio.png"
alt="Markdown Monster icon"
style="margin-right: 10px;" />"""+
"\nMedical image segmentation is a challenging task, made more difficult by many datasets' limited size and annotations. Denoising diffusion probabilistic models (DDPM) have recently shown promise in modelling " +
"the distribution of natural images and were successfully applied to various medical imaging tasks. This work focuses on semi-supervised image segmentation using diffusion models, particularly addressing domain " +
"generalisation. Firstly, we demonstrate that smaller diffusion steps generate latent representations that are more robust for downstream tasks than larger steps. Secondly, we use this insight to propose an improved " +
"esembling scheme that leverages information-dense small steps and the regularising effect of larger steps to generate predictions. Our model shows significantly better performance in domain-shifted settings while " +
"retaining competitive performance in-domain. Overall, this work highlights the potential of DDPMs for semi-supervised medical image segmentation and provides insights into optimising their performance under domain shift."+
"\n\n\n When choosing 'Show masked image', we post-process the segmentation by choosing up to two largest connected components and drawing their outline. "+
"\nNote that each model takes 10-35 seconds to run on CPU. Choosing all models and all training sizes will take some time. "+
"We noticed that gradio sometimes fails on the first try. If it doesn't work, try again.",
cache_examples=False,
)
#demo.queue().launch(share=True)