pits / attentions.py
junhyouk lee
hfdemo
b8b70ac
# from https://github.com/jaywalnut310/vits
import math
import torch
from torch import nn
from torch.nn import functional as F
import commons
from modules import LayerNorm
class Encoder(nn.Module):
def __init__(
self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size=1,
p_dropout=0.,
window_size=4,
**kwargs
):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
window_size=window_size
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class Decoder(nn.Module):
def __init__(
self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size=1,
p_dropout=0.,
proximal_bias=False,
proximal_init=True,
**kwargs
):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.drop = nn.Dropout(p_dropout)
self.self_attn_layers = nn.ModuleList()
self.norm_layers_0 = nn.ModuleList()
self.encdec_attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.self_attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
proximal_bias=proximal_bias,
proximal_init=proximal_init
)
)
self.norm_layers_0.append(LayerNorm(hidden_channels))
self.encdec_attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
causal=True
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask, h, h_mask):
"""
x: decoder input
h: encoder output
"""
self_attn_mask = commons.subsequent_mask(
x_mask.size(2)
).to(device=x.device, dtype=x.dtype)
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.self_attn_layers[i](x, x, self_attn_mask)
y = self.drop(y)
x = self.norm_layers_0[i](x + y)
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class MultiHeadAttention(nn.Module):
def __init__(
self,
channels,
out_channels,
n_heads,
p_dropout=0.,
window_size=None,
heads_share=True,
block_length=None,
proximal_bias=False,
proximal_init=False
):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = nn.Parameter(torch.randn(
n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
self.emb_rel_v = nn.Parameter(torch.randn(
n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
nn.init.xavier_uniform_(self.conv_v.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def forward(self, x, c, attn_mask=None):
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = (*key.size(), query.size(2))
#query = query.view(
# b,
# self.n_heads,
# self.k_channels,
# t_t
#).transpose(2, 3) #[b,h,t_t,c], d=h*c
#key = key.view(
# b,
# self.n_heads,
# self.k_channels,
# t_s
#).transpose(2, 3) #[b,h,t_s,c]
#value = value.view(
# b,
# self.n_heads,
# self.k_channels,
# t_s
#).transpose(2, 3) #[b,h,t_s,c]
#scores = torch.matmul(
# query / math.sqrt(self.k_channels), key.transpose(-2, -1)
#) #[b,h,t_t,t_s]
query = query.view(
b,
self.n_heads,
self.k_channels,
t_t
) #[b,h,c,t_t]
key = key.view(
b,
self.n_heads,
self.k_channels,
t_s
) #[b,h,c,t_s]
value = value.view(
b,
self.n_heads,
self.k_channels,
t_s
) #[b,h,c,t_s]
scores = torch.einsum('bhdt,bhds -> bhts', query / math.sqrt(self.k_channels), key) #[b,h,t_t,t_s]
#if self.window_size is not None:
# assert t_s == t_t, "Relative attention is only available for self-attention."
# key_relative_embeddings = self._get_relative_embeddings(
# self.emb_rel_k, t_s
# )
# rel_logits = self._matmul_with_relative_keys(
# query / math.sqrt(self.k_channels), key_relative_embeddings
# ) #[b,h,t_t,d],[h or 1,e,d] ->[b,h,t_t,e]
# scores_local = self._relative_position_to_absolute_position(rel_logits)
# scores = scores + scores_local
#if self.proximal_bias:
# assert t_s == t_t, "Proximal bias is only available for self-attention."
# scores = scores + \
# self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
#if mask is not None:
# scores = scores.masked_fill(mask == 0, -1e4)
# if self.block_length is not None:
# assert t_s == t_t, "Local attention is only available for self-attention."
# block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
# scores = scores.masked_fill(block_mask == 0, -1e4)
#p_attn = F.softmax(scores, dim=-1) # [b, h, t_t, t_s]
#p_attn = self.drop(p_attn)
#output = torch.matmul(p_attn, value) # [b,h,t_t,t_s],[b,h,t_s,c] -> [b,h,t_t,c]
#if self.window_size is not None:
# relative_weights = self._absolute_position_to_relative_position(p_attn) #[b, h, t_t, 2*t_t-1]
# value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) #[h or 1, 2*t_t-1, c]
# output = output + \
# self._matmul_with_relative_values(
# relative_weights, value_relative_embeddings) # [b, h, t_t, 2*t_t-1],[h or 1, 2*t_t-1, c] -> [b, h, t_t, c]
#output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, c] -> [b,h,c,t_t] -> [b, d, t_t]
if self.window_size is not None:
assert t_s == t_t, "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(
self.emb_rel_k, t_s
)
rel_logits = torch.einsum('bhdt,hed->bhte',
query / math.sqrt(self.k_channels), key_relative_embeddings
) #[b,h,c,t_t],[h or 1,e,c] ->[b,h,t_t,e]
scores_local = self._relative_position_to_absolute_position(rel_logits)
scores = scores + scores_local
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + \
self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
assert t_s == t_t, "Local attention is only available for self-attention."
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
scores = scores.masked_fill(block_mask == 0, -1e4)
p_attn = F.softmax(scores, dim=-1) # [b, h, t_t, t_s]
p_attn = self.drop(p_attn)
output = torch.einsum('bhcs,bhts->bhct', value , p_attn) # [b,h,c,t_s],[b,h,t_t,t_s] -> [b,h,c,t_t]
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn) #[b, h, t_t, 2*t_t-1]
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) #[h or 1, 2*t_t-1, c]
output = output + \
torch.einsum('bhte,hec->bhct',
relative_weights, value_relative_embeddings) # [b, h, t_t, 2*t_t-1],[h or 1, 2*t_t-1, c] -> [b, h, c, t_t]
output = output.view(b, d, t_t) # [b, h, c, t_t] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
#ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
ret = torch.einsum('bhld,hmd -> bhlm', x, y)
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[
:, slice_start_position:slice_end_position
]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = F.pad(x, commons.convert_pad_shape(
[[0, 0], [0, 0], [0, 0], [0, 1]]
))
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(x_flat, commons.convert_pad_shape(
[[0, 0], [0, 0], [0, length-1]]
))
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[
:, :, :length, length-1:
]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(x, commons.convert_pad_shape(
[[0, 0], [0, 0], [0, 0], [0, length-1]]
))
x_flat = x.view([batch, heads, length**2 + length*(length - 1)])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(x_flat, commons.convert_pad_shape(
[[0, 0], [0, 0], [length, 0]]
))
x_final = x_flat.view([batch, heads, length, 2*length])[:, :, :, 1:]
return x_final
def _attention_bias_proximal(self, length):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(nn.Module):
def __init__(
self,
in_channels,
out_channels,
filter_channels,
kernel_size,
p_dropout=0.,
activation=None,
causal=False
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
if causal:
self.padding = self._causal_padding
else:
self.padding = self._same_padding
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = nn.Dropout(p_dropout)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
if self.activation == "gelu":
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(self.padding(x * x_mask))
return x * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = self.kernel_size - 1
pad_r = 0
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = (self.kernel_size - 1) // 2
pad_r = self.kernel_size // 2
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x