SecretLanguage / pages /2_😈_BlackBox_and_WhiteBox_Attacks.py
AnonymousAuthors's picture
Update pages/2_😈_BlackBox_and_WhiteBox_Attacks.py
3fd6a37
raw
history blame
19.1 kB
import streamlit as st
from streamlit_extras.stateful_button import button
import os
import openai
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoTokenizer, AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM
import pickle
import torch
from copy import deepcopy
from time import time
from transformers import pipeline, set_seed
import platform
import numpy as np
# init
openai.api_key = os.environ.get('openai_api_key')
all_keys = pickle.load(open('keys.pkl', 'rb'))
all_keys = [i.strip() for i in all_keys]
set_seed(0)
# sidebar instructions
st.sidebar.markdown('On this page, we offer a tool for generating replacement words using secret languages.')
st.sidebar.markdown('#### Require ')
st.sidebar.markdown('`Input text`: a sentence or paragraph.')
st.sidebar.markdown('`Number of replacements`: the number of secret language samples.')
st.sidebar.markdown('`Steps for searching Secret Langauge`: the steps in the SecretFinding process.')
st.sidebar.markdown('#### Two methods')
st.sidebar.markdown('1. Searching secret languages based on models: this method calculates secret languages using [gpt2](https://huggingface.co/gpt2), [gpt-medium](https://huggingface.co/gpt2-medium), [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B)') #, [EleutherAI/gpt-neo-2.7B](https://huggingface.co/EleutherAI/gpt-neo-2.7B), [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b), or [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B).')
st.sidebar.markdown('2. Use the secret language we found on ALBERT, DistillBERT, and Roberta: this method replaces words directly with the secret language dictionary derived from ALBERT, DistillBERT, and Roberta.')
st.sidebar.markdown('#### Return')
st.sidebar.markdown(
'To see whether the whitebox attack works on LLMs (gpt2 and EleutherAI/gpt-neo-1.3B), we set random seeds to 0 and present the responses.'
)
st.sidebar.markdown(
'To see whether the blackbox attack works on LLMs, we also add the response using [Codex](https://openai.com/blog/openai-codex/). '
'Specifically, we use the `code-davinci-002` model with 16 max_tokens responses.'
)
# title
st.title('Attacks')
#
# They only use the last logit for text generation, so only using the last one would be fine.
# https://github.com/huggingface/transformers/blob/ae54e3c3b18bac0832ad62ea9b896dfd52a09850/src/transformers/generation/utils.py#L2189
# https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L2189
# online search
def run(model, tokenizer, embedidng_layer=None, _bar_text=None, bar=None, text='Which name is also used to describe the Amazon rainforest in English?',
loss_funt=torch.nn.MSELoss(), lr=1, noise_mask=[1,2], restarts=10, step=100, device = torch.device('cpu'),
sl_paint_red=False, model_choice='GPT-2'):
restarts = int(restarts / 3)
if restarts:
# init
subword_num = embedidng_layer.weight.shape[0]
# get the original input and output
_input = tokenizer([text] * restarts, return_tensors="pt")
for k in _input.keys():
_input[k] = _input[k].to(device)
ori_output = model(**_input)
ori_output = ori_output['logits'][:, -1, :]
# get noise
ori_embedding = embedidng_layer(_input['input_ids']).detach()
ori_embedding.requires_grad = False
ori_word_one_hot = torch.nn.functional.one_hot(_input['input_ids'].detach(), num_classes=subword_num).to(device)
noise = torch.randn(ori_embedding.shape[0], ori_embedding.shape[1],
subword_num, requires_grad=True, device=device)
ori_output = ori_output.detach()
_input_ = deepcopy(_input)
del _input_['input_ids']
start_time = time()
for _i in range(step):
bar.progress((_i + 1) / (3 * step))
# start perturb
perturbed_embedding = ori_embedding.clone()
for i in range(len(noise_mask)):
_tmp_perturbed_input = ori_word_one_hot[:, noise_mask[i]] + noise[:, i]
_tmp_perturbed_input /= _tmp_perturbed_input.sum(-1, keepdim=True)
perturbed_embedding[:, noise_mask[i]] = torch.matmul(_tmp_perturbed_input, embedidng_layer.weight)
_input_['inputs_embeds'] = perturbed_embedding
outputs_perturbed = model(**_input_)
outputs_perturbed = outputs_perturbed['logits'][:, -1, :]
loss = loss_funt(ori_output, outputs_perturbed)
loss.backward()
noise.data = (noise.data - lr * noise.grad.detach())
noise.grad.zero_()
_bar_text.text(f'Using {model_choice}, {(time() - start_time) * (3 * step - _i - 1) / (_i + 1):.2f} seconds left')
# back to subwords
with torch.no_grad():
perturbed_inputs = deepcopy(_input)
for i in range(len(noise_mask)):
_tmp_perturbed_input = ori_word_one_hot[:, noise_mask[i]] + noise[:, i]
_tmp_perturbed_input /= _tmp_perturbed_input.sum(-1, keepdim=True)
# print(f'torch.argmax(_tmp_perturbed_input, dim=-1).long(){torch.argmax(_tmp_perturbed_input, dim=-1).long()}')
perturbed_inputs['input_ids'][:, noise_mask[i]] = torch.argmax(_tmp_perturbed_input, dim=-1).long()
perturbed_questions = []
for i in range(restarts):
perturbed_questions.append(tokenizer.decode(perturbed_inputs["input_ids"][i]).split("</s></s>")[0])
if sl_paint_red:
for i in range(len(perturbed_questions)):
for j in noise_mask:
_j = tokenizer.decode(perturbed_inputs["input_ids"][i][j])
# print(f'_j {_j}')
perturbed_questions[i] = perturbed_questions[i].replace(_j, f':red[{_j}]')
return perturbed_questions
else:
return []
# online search
def run_addrandom_token(model, tokenizer, embedidng_layer=None, _bar_text=None, bar=None, text='Which name is also used to describe the Amazon rainforest in English?',
loss_funt=torch.nn.MSELoss(), lr=1, noise_mask=[1,2], restarts=10, step=100, device = torch.device('cpu'),
sl_paint_red=False, model_choice='GPT-2'):
restarts = restarts - int(restarts / 3)
if restarts:
# init
subword_num = embedidng_layer.weight.shape[0]
_input = tokenizer([text] * restarts, return_tensors='pt')
for k in _input.keys():
_input[k] = _input[k].to(device)
ori_output = model(**_input)
ori_output = ori_output['logits'][:, -1, :]
ori_output = ori_output.detach()
# add random tokens
new_texts = []
old_inv_sorted_mask = sorted(noise_mask, reverse=True)
old_sorted_mask = sorted(noise_mask)
for i in range(restarts):
_input_ids = _input.input_ids[i].cpu().numpy().tolist()
for noise_ind in old_inv_sorted_mask:
_input_ids.insert(noise_ind + 1, np.random.choice(subword_num))
_input_ids.insert(noise_ind, np.random.choice(subword_num))
new_texts.append(_input_ids)
new_mask = []
for i in range(len(old_sorted_mask)):
new_mask.append(old_sorted_mask[i] + 2 * i)
new_mask.append(old_sorted_mask[i] + 2 * i + 1)
new_mask.append(old_sorted_mask[i] + 2 * i + 2)
noise_mask = new_mask
_input['input_ids'] = torch.Tensor(new_texts).long()
_input['attention_mask'] = torch.ones_like(_input['input_ids'])
for k in _input.keys():
_input[k] = _input[k].to(device)
# print(f'_input {_input["input_ids"].shape}')
# get noise
ori_embedding = embedidng_layer(_input['input_ids']).detach()
ori_embedding.requires_grad = False
ori_word_one_hot = torch.nn.functional.one_hot(_input['input_ids'].detach(), num_classes=subword_num).to(device)
noise = torch.randn(ori_embedding.shape[0], ori_embedding.shape[1],
subword_num, requires_grad=True, device=device)
_input_ = deepcopy(_input)
del _input_['input_ids']
start_time = time()
for _i in range(step):
bar.progress((_i + 1) / (step))
# start perturb
perturbed_embedding = ori_embedding.clone()
for i in range(len(noise_mask)):
_tmp_perturbed_input = ori_word_one_hot[:, noise_mask[i]] + noise[:, i]
_tmp_perturbed_input /= _tmp_perturbed_input.sum(-1, keepdim=True)
perturbed_embedding[:, noise_mask[i]] = torch.matmul(_tmp_perturbed_input, embedidng_layer.weight)
_input_['inputs_embeds'] = perturbed_embedding
outputs_perturbed = model(**_input_)
outputs_perturbed = outputs_perturbed['logits'][:, -1, :]
loss = loss_funt(ori_output, outputs_perturbed)
loss.backward()
noise.data = (noise.data - lr * noise.grad.detach())
noise.grad.zero_()
_bar_text.text(f'Using {model_choice}, {(time() - start_time) * (step - _i - 1) / (_i + 1):.2f} seconds left')
# back to subwords
with torch.no_grad():
perturbed_inputs = deepcopy(_input)
for i in range(len(noise_mask)):
_tmp_perturbed_input = ori_word_one_hot[:, noise_mask[i]] + noise[:, i]
_tmp_perturbed_input /= _tmp_perturbed_input.sum(-1, keepdim=True)
# print(f'torch.argmax(_tmp_perturbed_input, dim=-1).long(){torch.argmax(_tmp_perturbed_input, dim=-1).long()}')
perturbed_inputs['input_ids'][:, noise_mask[i]] = torch.argmax(_tmp_perturbed_input, dim=-1).long()
perturbed_questions = []
for i in range(restarts):
perturbed_questions.append(tokenizer.decode(perturbed_inputs["input_ids"][i]).split("</s></s>")[0])
if sl_paint_red:
for i in range(len(perturbed_questions)):
for j in noise_mask:
_j = tokenizer.decode(perturbed_inputs["input_ids"][i][j])
# print(f'_j {_j}')
perturbed_questions[i] = perturbed_questions[i].replace(_j, f':red[{_j}]')
return perturbed_questions
else:
return []
# get secret language using the found dictionary
def get_secret_language(title):
if ord(title[0]) in list(range(48, 57)):
file_name = 'num_dict.pkl'
elif ord(title[0]) in list(range(97, 122)) + list(range(65, 90)):
file_name = f'{ord(title[0])}_dict.pkl'
else:
file_name = 'other_dict.pkl'
datas = pickle.load(open(f'all_secret_langauge_by_fist/{file_name}', 'rb'))
data_ = datas[title.strip()]
_sls_id = []
for i in range(len(data_['secret languages'])):
new_ids = tokenizer(data_['replaced sentences'][i])['input_ids']
_sl = data_['secret languages'][i]
for _id in new_ids:
if _sl.strip() == tokenizer.decode(_id):
_sls_id.append(_id)
break
return _sls_id
# openai api
def get_codex_response(prompt):
try:
response = openai.Completion.create(
engine='code-davinci-002',
prompt=prompt,
max_tokens=16,
temperature=0,
logprobs=1
)
output_openai = ''.join(response['choices'][0]['logprobs']['tokens'])
except Exception as ex:
output_openai = str(ex).replace('org-oOthbOAqOPamO9jhWBjUwDRa', '')
return output_openai
# help function
def clf_keys():
for key in st.session_state.keys():
if key in ['tokenizer', 'start']:
st.session_state[key] = False
elif 'tokenizer_' in key:
del st.session_state[key]
# main page
option = st.selectbox(
'Which method you would like to use?',
('Searching secret languages based on models', 'Use the secret language we found on ALBERT, DistillBERT, and Roberta.')
)
title = st.text_area('Input text.', 'Which name is also used to describe the Amazon rainforest in English?', on_change=clf_keys)
if option == 'Searching secret languages based on models':
model_choice = st.selectbox(
'Which model you would like to use?',
# ('gpt2', "EleutherAI/gpt-neo-1.3B", "EleutherAI/gpt-neo-2.7B", "EleutherAI/gpt-neox-20b", "EleutherAI/gpt-j-6B")
('gpt2', 'gpt-medium', "EleutherAI/gpt-neo-1.3B")
)
_cols = st.columns(2)
restarts = _cols[0].number_input('Number of replacements.', value=10, min_value=1, step=1, format='%d')
step = _cols[1].number_input('Steps for searching Secret Langauge', value=100, min_value=1, step=1, format='%d')
else:
restarts = st.number_input('Number of replacements.', value=10, min_value=1, step=1, format='%d')
if button('Tokenize', key='tokenizer'):
if option == 'Searching secret languages based on models':
tokenizer = AutoTokenizer.from_pretrained(model_choice)
else:
tokenizer = AutoTokenizer.from_pretrained('gpt2')
for key in st.session_state.keys():
if key not in ['tokenizer', 'start'] and 'tokenizer_' not in key:
del st.session_state[key]
input_ids = tokenizer(title)['input_ids']
st.markdown('## Choose the (sub)words you want to replace.')
subwords = [tokenizer.decode(i) for i in input_ids]
_len = len(subwords)
for i in range(int(_len / 6) + 1):
cols = st.columns(6)
for j in range(6):
with cols[j]:
_index = i * 6 + j
if _index < _len:
disable = False
if option == 'Use the secret language we found on ALBERT, DistillBERT, and Roberta.':
if subwords[_index].strip() not in all_keys:
disable = True
# if f'tokenizer_{_index}' in st.session_state:
# del st.session_state[f'tokenizer_{_index}']
button(subwords[_index], key=f'tokenizer_{_index}', disabled=disable)
# st.markdown(dict(st.session_state))
st.markdown('## Ready to go? Hold on tight.')
if button('Give it a shot!', key='start'):
chose_indices = []
for key in st.session_state:
if st.session_state[key]:
if 'tokenizer_' in key:
_index = int(key.replace('tokenizer_', ''))
# st.markdown(key)
if _index < len(input_ids):
chose_indices.append(_index)
if len(chose_indices):
if option == 'Searching secret languages based on models':
model = AutoModelForCausalLM.from_pretrained(model_choice)
generator = pipeline('text-generation', model='gpt2')
if not platform.system().lower() == 'darwin':
generator1 = pipeline('text-generation', model='EleutherAI/gpt-neo-1.3B')
with st.expander('**Original input text**: '+ title):
st.markdown(f'The response of gpt2 with the prompt :blue[{title}]')
st.markdown('<blockquote>' + generator(title, max_length=256, num_return_sequences=1)[0]['generated_text'].replace(title, '', 1) + '</blockquote>', unsafe_allow_html=True)
if not platform.system().lower() == 'darwin':
st.markdown(f'The response of EleutherAI/gpt-neo-1.3B with the prompt :blue[{title}]')
st.markdown('<blockquote>' + generator1(title, do_sample=True, max_length=256)[0]['generated_text'].replace(title, '', 1) + '</blockquote>', unsafe_allow_html=True)
output_openai = get_codex_response(title)
st.markdown(f'The response of [Codex](https://openai.com/blog/openai-codex/) with the prompt :blue[{title}]')
st.markdown('<blockquote>' + output_openai + '</blockquote>', unsafe_allow_html=True)
if option == 'Searching secret languages based on models':
_bar_text = st.empty()
bar = st.progress(0)
outputs = run(model, tokenizer, model.transformer.wte,
_bar_text=_bar_text, bar=bar, text=title, noise_mask=chose_indices, restarts=restarts, step=step,
model_choice=model_choice)
outputs.extend(run_addrandom_token(model, tokenizer, model.transformer.wte,
_bar_text=_bar_text, bar=bar, text=title, noise_mask=chose_indices, restarts=restarts, step=step,
model_choice=model_choice))
else:
_new_ids = []
_sl = {}
_used_sl = []
for j in chose_indices:
_sl[j] = get_secret_language(tokenizer.decode(input_ids[j]).strip())
for i in range(restarts):
_tmp = []
for j in range(len(input_ids)):
if j in chose_indices:
_tmp.append(_sl[j][i % len(_sl[j])])
_used_sl.append(_sl[j][i % len(_sl[j])])
else:
_tmp.append(input_ids[j])
_new_ids.append(_tmp)
outputs = [tokenizer.decode(_new_ids[i]).split('</s></s>')[0] for i in range(restarts)]
if False:
original_outputs = outputs
for i in range(len(outputs)):
for j in _used_sl:
_j = tokenizer.decode(j)
outputs[i] = outputs[i].replace(_j, f':red[{_j}]')
st.success(f'We found {restarts} replacements!', icon="βœ…")
# st.markdown('<br>'.join(outputs), unsafe_allow_html=True)
for i in range(restarts):
with st.expander(outputs[i]):
st.markdown(f'The response of gpt2 with the prompt :blue[{outputs[i]}]')
st.markdown('<blockquote>' + generator(outputs[i], max_length=256, num_return_sequences=1)[0]['generated_text'].replace(title, '', 1) + '</blockquote>', unsafe_allow_html=True)
if not platform.system().lower() == 'darwin':
st.markdown(f'The response of EleutherAI/gpt-neo-1.3B with the prompt :blue[{outputs[i]}]')
st.markdown('<blockquote>' + generator1(outputs[i], do_sample=True, max_length=256)[0]['generated_text'].replace(title, '', 1) + '</blockquote>', unsafe_allow_html=True)
output_openai = get_codex_response(outputs[i])
st.markdown(f'The response of [Codex](https://openai.com/blog/openai-codex/) with the prompt :blue[{outputs[i]}]')
st.markdown('<blockquote>' + output_openai + '</blockquote>', unsafe_allow_html=True)
else:
st.error('At least choose one subword.')