annas4421 commited on
Commit
df3b267
·
verified ·
1 Parent(s): 41d137b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -5
app.py CHANGED
@@ -27,6 +27,18 @@ ANSWER:
27
  """
28
  CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)
29
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  # Function to extract text from documents
31
  def get_document_text(uploaded_files):
32
  documents = []
@@ -62,15 +74,17 @@ def get_vectorstore(chunks):
62
 
63
  # Create a conversational chain
64
  def get_conversationchain(vectorstore):
65
- llm = ChatOpenAI(temperature=0.4, model_name='gpt-4o-mini')
66
  memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
67
- return ConversationalRetrievalChain.from_llm(
68
  llm=llm,
69
- retriever=vectorstore.as_retriever(),
70
  condense_question_prompt=CUSTOM_QUESTION_PROMPT,
71
- memory=memory
 
72
  )
73
-
 
74
  # Handle user questions and update chat history
75
  def handle_question(question):
76
  if not st.session_state.conversation:
 
27
  """
28
  CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)
29
 
30
+ prompt_template = """<s>[INST]
31
+ You will answer from the provided files stored in knowledge base
32
+ CONTEXT: {context}
33
+ CHAT HISTORY: {chat_history}
34
+ QUESTION: {question}
35
+ ANSWER:
36
+ </s>[INST]
37
+
38
+ """
39
+
40
+ prompt = PromptTemplate(template=prompt_template,
41
+ input_variables=['context', 'question', 'chat_history'])
42
  # Function to extract text from documents
43
  def get_document_text(uploaded_files):
44
  documents = []
 
74
 
75
  # Create a conversational chain
76
  def get_conversationchain(vectorstore):
77
+ llm = ChatOpenAI(temperature=0.5, model_name='gpt-4o-mini')
78
  memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
79
+ conversation_chain = ConversationalRetrievalChain.from_llm(
80
  llm=llm,
81
+ retriever=vectorstore.as_retriever(search_type="similarity",search_kwargs={"k": 20}),
82
  condense_question_prompt=CUSTOM_QUESTION_PROMPT,
83
+ memory=memory,
84
+ combine_docs_chain_kwargs={'prompt': prompt}
85
  )
86
+ return conversation_chain
87
+
88
  # Handle user questions and update chat history
89
  def handle_question(question):
90
  if not st.session_state.conversation: