Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification | |
from PIL import Image, ImageDraw | |
import torch | |
from torchvision import transforms | |
import pandas as pd | |
# DATA AUGMENTATION | |
augment = transforms.Compose([ | |
transforms.RandomHorizontalFlip(p=0.5), | |
transforms.RandomRotation(10), | |
transforms.ColorJitter(brightness=0.2, contrast=0.2), | |
]) | |
MODEL_ID = "tribber93/my-trash-classification" | |
trash_classifier = pipeline( | |
"image-classification", | |
model=MODEL_ID, | |
device=0 if torch.cuda.is_available() else -1, | |
top_k=3 | |
) | |
# MAPPING | |
POUBELLES = { | |
"cardboard": "papier/carton", | |
"glass": "verre", | |
"metal": "métal", | |
"paper": "papier", | |
"plastic": "plastique", | |
"trash": "ordures ménagères", | |
} | |
#CLASSIFICATION | |
def classify_image(image: Image.Image): | |
image_aug = augment(image) | |
results = trash_classifier(image_aug) | |
rows = [] | |
for r in results: | |
label = r["label"] | |
score = r["score"] | |
poubelle = POUBELLES.get(label.lower(), "inconnue") | |
rows.append({ | |
"Objet": label, | |
"Poubelle": poubelle, | |
"Confiance (%)": round(score * 100, 2) | |
}) | |
return pd.DataFrame(rows) | |
#GRADIO | |
interface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Dataframe( | |
headers=["Objet", "Poubelle", "Confiance (%)"], | |
row_count=(1, 10) | |
), | |
title="🗑️ Classifieur de Déchets ", | |
description=( | |
"Dépose une image de déchet pour savoir dans quelle poubelle la trier !! " | |
"Le modèle est fine-tuné sur TrashNet et bénéficie de data augmentation pour une meilleure robustesse." | |
), | |
examples=None, | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
interface.launch() | |