Spaces:
Sleeping
Sleeping
ankush-003
commited on
Commit
β’
61fd43f
1
Parent(s):
920be54
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,44 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
-
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
4 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
import pymongo
|
6 |
import logging
|
7 |
import nest_asyncio
|
8 |
from langchain.docstore.document import Document
|
9 |
import redis
|
10 |
-
import asyncio
|
11 |
import threading
|
12 |
-
import
|
|
|
13 |
|
14 |
-
#
|
15 |
-
nest_asyncio.apply()
|
16 |
-
logging.basicConfig(level=logging.INFO)
|
17 |
database = "AlertSimAndRemediation"
|
18 |
collection = "alert_embed"
|
19 |
stream_name = "alerts"
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
REDIS_PWD = os.getenv('REDIS_PWD')
|
25 |
|
26 |
-
#
|
27 |
embedding_args = {
|
28 |
-
"model_name": "BAAI/bge-large-en-v1.5",
|
29 |
-
"model_kwargs": {"device": "cpu"},
|
30 |
-
"encode_kwargs": {"normalize_embeddings": True}
|
31 |
}
|
32 |
embedding_model = HuggingFaceEmbeddings(**embedding_args)
|
33 |
|
34 |
-
#
|
35 |
-
connection = pymongo.MongoClient(MONGO_URI)
|
36 |
alert_collection = connection[database][collection]
|
37 |
|
38 |
# Redis connection
|
39 |
-
r = redis.Redis(host=REDIS_HOST, password=REDIS_PWD, port=16652)
|
40 |
-
|
41 |
-
# Global variables to store alert information
|
42 |
-
latest_alert = "No alerts yet."
|
43 |
-
alert_count = 0
|
44 |
|
45 |
# Preprocessing
|
46 |
-
def create_textual_description(entry_data):
|
47 |
entry_dict = {k.decode(): v.decode() for k, v in entry_data.items()}
|
48 |
|
49 |
category = entry_dict["Category"]
|
@@ -59,7 +54,7 @@ def create_textual_description(entry_data):
|
|
59 |
return description, entry_dict
|
60 |
|
61 |
# Saving alert doc
|
62 |
-
def save(entry):
|
63 |
vector_search = MongoDBAtlasVectorSearch.from_documents(
|
64 |
documents=[Document(
|
65 |
page_content=entry["content"],
|
@@ -69,55 +64,65 @@ def save(entry):
|
|
69 |
collection=alert_collection,
|
70 |
index_name="alert_index",
|
71 |
)
|
72 |
-
logging.info("
|
73 |
|
74 |
# Listening to alert stream
|
75 |
-
def listen_to_alerts():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
global latest_alert, alert_count
|
77 |
-
last_id = '$'
|
78 |
-
|
79 |
-
while True:
|
80 |
-
entries = r.xread({stream_name: last_id}, block=1000, count=None)
|
81 |
-
|
82 |
-
if entries:
|
83 |
-
stream, new_entries = entries[0]
|
84 |
-
|
85 |
-
for entry_id, entry_data in new_entries:
|
86 |
-
description, entry_dict = create_textual_description(entry_data)
|
87 |
-
save({
|
88 |
-
"content": description,
|
89 |
-
"metadata": entry_dict
|
90 |
-
})
|
91 |
-
latest_alert = description
|
92 |
-
alert_count += 1
|
93 |
-
last_id = entry_id
|
94 |
-
|
95 |
-
# Start listening to alerts in a separate thread
|
96 |
-
threading.Thread(target=listen_to_alerts, daemon=True).start()
|
97 |
-
|
98 |
-
# Function to get current stats
|
99 |
-
def get_current_stats():
|
100 |
return latest_alert, f"Total Alerts: {alert_count}"
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
def update_stats():
|
112 |
-
while True:
|
113 |
-
time.sleep(1) # Update every second
|
114 |
-
yield get_current_stats()
|
115 |
-
|
116 |
-
iface.load(update_stats, None, [latest_alert_md, alert_count_md], every=1)
|
117 |
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# Launch the app
|
121 |
-
if __name__ == "__main__":
|
122 |
-
|
123 |
-
iface.queue().launch()
|
|
|
1 |
+
from langchain_mongodb import MongoDBAtlasVectorSearch
|
2 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
# from dotenv import load_dotenv
|
4 |
import os
|
|
|
|
|
|
|
5 |
import pymongo
|
6 |
import logging
|
7 |
import nest_asyncio
|
8 |
from langchain.docstore.document import Document
|
9 |
import redis
|
|
|
10 |
import threading
|
11 |
+
import asyncio
|
12 |
+
import gradio as gr
|
13 |
|
14 |
+
# config
|
15 |
+
# nest_asyncio.apply()
|
16 |
+
logging.basicConfig(level = logging.INFO)
|
17 |
database = "AlertSimAndRemediation"
|
18 |
collection = "alert_embed"
|
19 |
stream_name = "alerts"
|
20 |
|
21 |
+
# Global variables to store alert information
|
22 |
+
latest_alert = "No alerts yet."
|
23 |
+
alert_count = 0
|
|
|
24 |
|
25 |
+
# embedding model
|
26 |
embedding_args = {
|
27 |
+
"model_name" : "BAAI/bge-large-en-v1.5",
|
28 |
+
"model_kwargs" : {"device": "cpu"},
|
29 |
+
"encode_kwargs" : {"normalize_embeddings": True}
|
30 |
}
|
31 |
embedding_model = HuggingFaceEmbeddings(**embedding_args)
|
32 |
|
33 |
+
# Mongo Connection
|
34 |
+
connection = pymongo.MongoClient(os.environ["MONGO_URI"])
|
35 |
alert_collection = connection[database][collection]
|
36 |
|
37 |
# Redis connection
|
38 |
+
r = redis.Redis(host=os.environ['REDIS_HOST'], password=os.environ['REDIS_PWD'], port=16652)
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Preprocessing
|
41 |
+
async def create_textual_description(entry_data):
|
42 |
entry_dict = {k.decode(): v.decode() for k, v in entry_data.items()}
|
43 |
|
44 |
category = entry_dict["Category"]
|
|
|
54 |
return description, entry_dict
|
55 |
|
56 |
# Saving alert doc
|
57 |
+
async def save(entry):
|
58 |
vector_search = MongoDBAtlasVectorSearch.from_documents(
|
59 |
documents=[Document(
|
60 |
page_content=entry["content"],
|
|
|
64 |
collection=alert_collection,
|
65 |
index_name="alert_index",
|
66 |
)
|
67 |
+
logging.info("Alerts stored successfully!")
|
68 |
|
69 |
# Listening to alert stream
|
70 |
+
async def listen_to_alerts(r):
|
71 |
+
global latest_alert, alert_count
|
72 |
+
try:
|
73 |
+
last_id = '$'
|
74 |
+
|
75 |
+
while True:
|
76 |
+
entries = r.xread({stream_name: last_id}, block=0, count=None)
|
77 |
+
|
78 |
+
if entries:
|
79 |
+
stream, new_entries = entries[0]
|
80 |
+
|
81 |
+
for entry_id, entry_data in new_entries:
|
82 |
+
description, entry_dict = await create_textual_description(entry_data)
|
83 |
+
await save({
|
84 |
+
"content" : description,
|
85 |
+
"metadata" : entry_dict
|
86 |
+
})
|
87 |
+
print(description)
|
88 |
+
latest_alert = description
|
89 |
+
alert_count += 1
|
90 |
+
# Update the last ID read
|
91 |
+
last_id = entry_id
|
92 |
+
await asyncio.sleep(1)
|
93 |
+
|
94 |
+
except KeyboardInterrupt:
|
95 |
+
print("Exiting...")
|
96 |
+
|
97 |
+
def run_alert_listener():
|
98 |
+
asyncio.run(listen_to_alerts(r))
|
99 |
+
|
100 |
+
# Start the alert listener thread
|
101 |
+
alert_thread = threading.Thread(target=run_alert_listener)
|
102 |
+
alert_thread.start()
|
103 |
+
|
104 |
+
# gradio interface
|
105 |
+
# Gradio interface
|
106 |
+
def get_latest_alert():
|
107 |
global latest_alert, alert_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return latest_alert, f"Total Alerts: {alert_count}"
|
109 |
|
110 |
+
with gr.Blocks() as app:
|
111 |
+
gr.Markdown("# Alert Dashboard π")
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
latest_alert_box = gr.Textbox(label="Latest Alert", lines=3, interactive=False)
|
115 |
+
alert_count_box = gr.Textbox(label="Alert Count", interactive=False)
|
116 |
+
|
117 |
+
refresh_button = gr.Button("Refresh")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
refresh_button.click(get_latest_alert, inputs=None, outputs=[latest_alert_box, alert_count_box])
|
120 |
+
|
121 |
+
app.load(get_latest_alert, inputs=None, outputs=[latest_alert_box, alert_count_box])
|
122 |
+
|
123 |
+
# Auto-refresh every 5 seconds
|
124 |
+
app.load(get_latest_alert, inputs=None, outputs=[latest_alert_box, alert_count_box], every=5)
|
125 |
|
126 |
# Launch the app
|
127 |
+
# if __name__ == "__main__":
|
128 |
+
app.launch()
|
|