ankitdotpy's picture
Update app.py
804e256 verified
raw
history blame contribute delete
783 Bytes
from transformers import pipeline
import gradio as gr
# Load SVM model from the local file path
svm_model = pipeline("ankitdotpy/SVM_model_by_Group12")
# Define prediction function
def predict_sentiment(text):
# Predict sentiment using the imported model
result = svm_model.predict([text])[0] # Assuming svm_model is an sklearn SVM model
return result
# Create Gradio interface
iface = gr.Interface(
fn=predict_sentiment,
inputs=gr.Textbox(placeholder="Enter Text", lines=10, label="Enter your text here:"),
outputs=gr.Textbox(label="Sentiment"),
title="Sentiment Analysis Developed by Group-12 (Ankit,Akshat,Gautam,Pritish) with ♥ from RCC Institute of Information Technology",
description="Enter text and predict sentiment"
)
iface.launch()