Spaces:
Running
Running
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | |
# SPDX-License-Identifier: MIT | |
import random | |
import torch | |
from torch.utils.data import Dataset | |
from torch.utils.data import sampler | |
#import lmdb | |
import torchvision.transforms as transforms | |
import six | |
import sys | |
from PIL import Image | |
import numpy as np | |
import os | |
import sys | |
import pickle | |
import numpy as np | |
from params import * | |
import glob, cv2 | |
import torchvision.transforms as transforms | |
def crop_(input): | |
image = Image.fromarray(input) | |
image = image.convert('L') | |
binary_image = image.point(lambda x: 0 if x > 127 else 255, '1') | |
bbox = binary_image.getbbox() | |
cropped_image = image.crop(bbox) | |
return np.array(cropped_image) | |
def get_transform(grayscale=False, convert=True): | |
transform_list = [] | |
if grayscale: | |
transform_list.append(transforms.Grayscale(1)) | |
if convert: | |
transform_list += [transforms.ToTensor()] | |
if grayscale: | |
transform_list += [transforms.Normalize((0.5,), (0.5,))] | |
else: | |
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] | |
return transforms.Compose(transform_list) | |
def load_itw_samples(folder_path, num_samples = 15): | |
if isinstance(folder_path, str): | |
paths = glob.glob(f'{folder_path}/*') | |
else: | |
paths = folder_path | |
paths = np.random.choice(paths, num_samples, replace = len(paths)<=num_samples) | |
words = [os.path.basename(path_i)[:-4] for path_i in paths] | |
imgs = [np.array(Image.open(i).convert('L')) for i in paths] | |
imgs = [crop_(im) for im in imgs] | |
imgs = [cv2.resize(imgs_i, (int(32*(imgs_i.shape[1]/imgs_i.shape[0])), 32)) for imgs_i in imgs] | |
max_width = 192 | |
imgs_pad = [] | |
imgs_wids = [] | |
trans_fn = get_transform(grayscale=True) | |
for img in imgs: | |
img = 255 - img | |
img_height, img_width = img.shape[0], img.shape[1] | |
outImg = np.zeros(( img_height, max_width), dtype='float32') | |
outImg[:, :img_width] = img[:, :max_width] | |
img = 255 - outImg | |
imgs_pad.append(trans_fn((Image.fromarray(img)))) | |
imgs_wids.append(img_width) | |
imgs_pad = torch.cat(imgs_pad, 0) | |
return imgs_pad.unsqueeze(0), torch.Tensor(imgs_wids).unsqueeze(0) | |
class TextDataset(): | |
def __init__(self, base_path = DATASET_PATHS, num_examples = 15, target_transform=None): | |
self.NUM_EXAMPLES = num_examples | |
#base_path = DATASET_PATHS | |
file_to_store = open(base_path, "rb") | |
self.IMG_DATA = pickle.load(file_to_store)['train'] | |
self.IMG_DATA = dict(list( self.IMG_DATA.items())) #[:NUM_WRITERS]) | |
if 'None' in self.IMG_DATA.keys(): | |
del self.IMG_DATA['None'] | |
self.author_id = list(self.IMG_DATA.keys()) | |
self.transform = get_transform(grayscale=True) | |
self.target_transform = target_transform | |
self.collate_fn = TextCollator() | |
def __len__(self): | |
return len(self.author_id) | |
def __getitem__(self, index): | |
NUM_SAMPLES = self.NUM_EXAMPLES | |
author_id = self.author_id[index] | |
self.IMG_DATA_AUTHOR = self.IMG_DATA[author_id] | |
random_idxs = np.random.choice(len(self.IMG_DATA_AUTHOR), NUM_SAMPLES, replace = True) | |
rand_id_real = np.random.choice(len(self.IMG_DATA_AUTHOR)) | |
real_img = self.transform(self.IMG_DATA_AUTHOR[rand_id_real]['img'].convert('L')) | |
real_labels = self.IMG_DATA_AUTHOR[rand_id_real]['label'].encode() | |
imgs = [np.array(self.IMG_DATA_AUTHOR[idx]['img'].convert('L')) for idx in random_idxs] | |
labels = [self.IMG_DATA_AUTHOR[idx]['label'].encode() for idx in random_idxs] | |
max_width = 192 #[img.shape[1] for img in imgs] | |
imgs_pad = [] | |
imgs_wids = [] | |
for img in imgs: | |
img = 255 - img | |
img_height, img_width = img.shape[0], img.shape[1] | |
outImg = np.zeros(( img_height, max_width), dtype='float32') | |
outImg[:, :img_width] = img[:, :max_width] | |
img = 255 - outImg | |
imgs_pad.append(self.transform((Image.fromarray(img)))) | |
imgs_wids.append(img_width) | |
imgs_pad = torch.cat(imgs_pad, 0) | |
item = {'simg': imgs_pad, 'swids':imgs_wids, 'img' : real_img, 'label':real_labels,'img_path':'img_path', 'idx':'indexes', 'wcl':index} | |
return item | |
class TextDatasetval(): | |
def __init__(self, base_path = DATASET_PATHS, num_examples = 15, target_transform=None): | |
self.NUM_EXAMPLES = num_examples | |
#base_path = DATASET_PATHS | |
file_to_store = open(base_path, "rb") | |
self.IMG_DATA = pickle.load(file_to_store)['test'] | |
self.IMG_DATA = dict(list( self.IMG_DATA.items()))#[NUM_WRITERS:]) | |
if 'None' in self.IMG_DATA.keys(): | |
del self.IMG_DATA['None'] | |
self.author_id = list(self.IMG_DATA.keys()) | |
self.transform = get_transform(grayscale=True) | |
self.target_transform = target_transform | |
self.collate_fn = TextCollator() | |
def __len__(self): | |
return len(self.author_id) | |
def __getitem__(self, index): | |
NUM_SAMPLES = self.NUM_EXAMPLES | |
author_id = self.author_id[index] | |
self.IMG_DATA_AUTHOR = self.IMG_DATA[author_id] | |
random_idxs = np.random.choice(len(self.IMG_DATA_AUTHOR), NUM_SAMPLES, replace = True) | |
rand_id_real = np.random.choice(len(self.IMG_DATA_AUTHOR)) | |
real_img = self.transform(self.IMG_DATA_AUTHOR[rand_id_real]['img'].convert('L')) | |
real_labels = self.IMG_DATA_AUTHOR[rand_id_real]['label'].encode() | |
imgs = [np.array(self.IMG_DATA_AUTHOR[idx]['img'].convert('L')) for idx in random_idxs] | |
labels = [self.IMG_DATA_AUTHOR[idx]['label'].encode() for idx in random_idxs] | |
max_width = 192 #[img.shape[1] for img in imgs] | |
imgs_pad = [] | |
imgs_wids = [] | |
for img in imgs: | |
img = 255 - img | |
img_height, img_width = img.shape[0], img.shape[1] | |
outImg = np.zeros(( img_height, max_width), dtype='float32') | |
outImg[:, :img_width] = img[:, :max_width] | |
img = 255 - outImg | |
imgs_pad.append(self.transform((Image.fromarray(img)))) | |
imgs_wids.append(img_width) | |
imgs_pad = torch.cat(imgs_pad, 0) | |
item = {'simg': imgs_pad, 'swids':imgs_wids, 'img' : real_img, 'label':real_labels,'img_path':'img_path', 'idx':'indexes', 'wcl':index} | |
return item | |
class TextCollator(object): | |
def __init__(self): | |
self.resolution = resolution | |
def __call__(self, batch): | |
img_path = [item['img_path'] for item in batch] | |
width = [item['img'].shape[2] for item in batch] | |
indexes = [item['idx'] for item in batch] | |
simgs = torch.stack([item['simg'] for item in batch], 0) | |
wcls = torch.Tensor([item['wcl'] for item in batch]) | |
swids = torch.Tensor([item['swids'] for item in batch]) | |
imgs = torch.ones([len(batch), batch[0]['img'].shape[0], batch[0]['img'].shape[1], max(width)], dtype=torch.float32) | |
for idx, item in enumerate(batch): | |
try: | |
imgs[idx, :, :, 0:item['img'].shape[2]] = item['img'] | |
except: | |
print(imgs.shape) | |
item = {'img': imgs, 'img_path':img_path, 'idx':indexes, 'simg': simgs, 'swids': swids, 'wcl':wcls} | |
if 'label' in batch[0].keys(): | |
labels = [item['label'] for item in batch] | |
item['label'] = labels | |
if 'z' in batch[0].keys(): | |
z = torch.stack([item['z'] for item in batch]) | |
item['z'] = z | |
return item | |