Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
device = torch.device("cpu") | |
# Load the model and tokenizer from Hugging Face | |
model_name = "anjikum/ph2-sft-retrained" # Replace with your model's Hugging Face repo name | |
model = AutoModelForCausalLM.from_pretrained(model_name,load_in_8bit=False).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Streamlit UI elements | |
st.title("Phi-2 Fine-Tuned Model") | |
st.write("Input a prompt and the model will generate a response.") | |
# User input | |
prompt = st.text_area("Enter your prompt:") | |
if st.button("Generate Answer"): | |
if prompt: | |
# Tokenize the prompt and generate a response | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
outputs = model.generate(**inputs, max_length=100, num_return_sequences=1) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Display the answer | |
st.write("Generated Answer:") | |
st.write(answer) | |
else: | |
st.warning("Please enter a prompt!") | |