SFT_Model_r1 / app.py
anjikum's picture
Update app.py
6c6ab5d verified
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = torch.device("cpu")
# Load the model and tokenizer from Hugging Face
model_name = "anjikum/ph2-sft-retrained" # Replace with your model's Hugging Face repo name
model = AutoModelForCausalLM.from_pretrained(model_name,load_in_8bit=False).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Streamlit UI elements
st.title("Phi-2 Fine-Tuned Model")
st.write("Input a prompt and the model will generate a response.")
# User input
prompt = st.text_area("Enter your prompt:")
if st.button("Generate Answer"):
if prompt:
# Tokenize the prompt and generate a response
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_length=100, num_return_sequences=1)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Display the answer
st.write("Generated Answer:")
st.write(answer)
else:
st.warning("Please enter a prompt!")