Update main.py
Browse files
main.py
CHANGED
|
@@ -30,10 +30,9 @@ def load_student_encodings(folder_path: str):
|
|
| 30 |
if not os.path.exists(folder_path):
|
| 31 |
return {"error": f"Folder '{folder_path}' does not exist"}
|
| 32 |
|
| 33 |
-
# Create face detector
|
| 34 |
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 35 |
-
|
| 36 |
-
|
| 37 |
# Check if a model already exists for this folder
|
| 38 |
model_path = os.path.join(folder_path, "face_model.pkl")
|
| 39 |
if os.path.exists(model_path):
|
|
@@ -73,38 +72,41 @@ def load_student_encodings(folder_path: str):
|
|
| 73 |
|
| 74 |
def process_image(image_array, students):
|
| 75 |
"""Compare uploaded image with stored student images using OpenCV."""
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
# Initialize face detector
|
| 80 |
-
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 81 |
-
|
| 82 |
-
# Detect faces
|
| 83 |
-
faces = face_detector.detectMultiScale(gray, 1.3, 5)
|
| 84 |
-
|
| 85 |
-
if len(faces) == 0:
|
| 86 |
-
return {"error": "No faces detected in the image"}
|
| 87 |
-
|
| 88 |
-
# List to store recognized students
|
| 89 |
-
present_students = set()
|
| 90 |
-
|
| 91 |
-
# Compare each detected face with student face images
|
| 92 |
-
for (x, y, w, h) in faces:
|
| 93 |
-
face_img = gray[y:y+h, x:x+w]
|
| 94 |
-
face_img = cv2.resize(face_img, (100, 100))
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
@app.post("/create_folder/")
|
| 110 |
async def create_folder(org_name: str = Form(...), folder_name: str = Form(...), files: List[UploadFile] = File(...)):
|
|
|
|
| 30 |
if not os.path.exists(folder_path):
|
| 31 |
return {"error": f"Folder '{folder_path}' does not exist"}
|
| 32 |
|
| 33 |
+
# Create face detector
|
| 34 |
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 35 |
+
|
|
|
|
| 36 |
# Check if a model already exists for this folder
|
| 37 |
model_path = os.path.join(folder_path, "face_model.pkl")
|
| 38 |
if os.path.exists(model_path):
|
|
|
|
| 72 |
|
| 73 |
def process_image(image_array, students):
|
| 74 |
"""Compare uploaded image with stored student images using OpenCV."""
|
| 75 |
+
try:
|
| 76 |
+
# Convert to grayscale
|
| 77 |
+
gray = cv2.cvtColor(image_array, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
# Initialize face detector
|
| 80 |
+
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 81 |
+
|
| 82 |
+
# Detect faces
|
| 83 |
+
faces = face_detector.detectMultiScale(gray, 1.3, 5)
|
| 84 |
+
|
| 85 |
+
if len(faces) == 0:
|
| 86 |
+
return {"error": "No faces detected in the image"}
|
| 87 |
+
|
| 88 |
+
# List to store recognized students
|
| 89 |
+
present_students = set()
|
| 90 |
+
|
| 91 |
+
# Compare each detected face with student face images
|
| 92 |
+
for (x, y, w, h) in faces:
|
| 93 |
+
face_img = gray[y:y+h, x:x+w]
|
| 94 |
+
face_img = cv2.resize(face_img, (100, 100))
|
| 95 |
|
| 96 |
+
for name, student_face in students.items():
|
| 97 |
+
# Simple template matching for demonstration
|
| 98 |
+
# In a production system, you'd use a proper face recognition algorithm
|
| 99 |
+
result = cv2.matchTemplate(face_img, student_face, cv2.TM_CCOEFF_NORMED)
|
| 100 |
+
similarity = np.max(result)
|
| 101 |
+
|
| 102 |
+
# Threshold for recognition
|
| 103 |
+
if similarity > 0.6:
|
| 104 |
+
present_students.add(name)
|
| 105 |
+
|
| 106 |
+
missing_students = set(students.keys()) - present_students
|
| 107 |
+
return {"present_students": list(present_students), "missing_students": list(missing_students)}
|
| 108 |
+
except Exception as e:
|
| 109 |
+
return {"error": f"Error processing image: {str(e)}"}
|
| 110 |
|
| 111 |
@app.post("/create_folder/")
|
| 112 |
async def create_folder(org_name: str = Form(...), folder_name: str = Form(...), files: List[UploadFile] = File(...)):
|