Spaces:
Sleeping
Sleeping
from langchain.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.document_loaders import PDFMinerLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain import HuggingFaceHub | |
from langchain.chains.summarize import load_summarize_chain | |
from langchain.chains.llm_summarization_checker.base import LLMSummarizationCheckerChain | |
from langchain.prompts import PromptTemplate | |
import os | |
import gradio as gr | |
import shutil | |
import re | |
import tempfile | |
import cache | |
from pathlib import Path | |
from google.colab import userdata | |
api_token=os.environ['api'] | |
os.environ["HUGGINFACEHUB_API_TOKEN"]=api_token | |
# api=userdata.get('api') | |
# api_token=api | |
# # api_token = | |
# os.environ["HUGGINFACEHUB_API_TOKEN"]=api_token | |
temp_dir = "/content/sample_data" | |
# file_path_dummy = "/content/2401.10231.pdf" | |
# if file_path_dummy.lower().endswith(".pdf") : | |
# loader = TextLoader(file_path_dummy) | |
# document= loader.load() | |
# print(document) | |
def data_ingestion(file_path): | |
if not os.path.exists(file_path): | |
raise ValueError(f"File path {file_path} does not exist.") | |
path = Path(file_path) | |
file_ext = path.suffix | |
# file_ext = os.path.splitext(file_path)[-1] | |
# if file_ext == ".pdf": | |
if file_path.lower().endswith(".pdf"): | |
loader = PDFMinerLoader(file_path) | |
elif file_path.lower().endswith(".txt"): | |
loader = TextLoader(file_path) | |
else: | |
loader = Docx2txtLoader(file_path) | |
# document= loader.load() | |
# loader = PDFMinerLoader(file_path) | |
document= loader.load() | |
length = len(document[0].page_content) | |
# Replace CharacterTextSplitter with RecursiveCharacterTextSplitter | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=0.03*length, chunk_overlap=0) | |
split_docs = text_splitter.split_documents(document) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}) | |
llm = HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
model_kwargs={"temperature":1, "max_length":10000}, | |
huggingfacehub_api_token=api_token) | |
return split_docs | |
# text_splitter = CharacterTextSplitter.from_tiktoken_encoder( | |
# chunk_size=2000, chunk_overlap=0 | |
# ) | |
# split_docs = text_splitter.split_documents(document) | |
# documents=split_text_into_batches(str(document),400) | |
# len(documents) | |
# documents[0] | |
# # | |
# from langchain.text_splitter import CharacterTextSplitter | |
# text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=0) | |
# documents = text_splitter.split_documents(document) | |
# Embeddings | |
# from langchain.chains.question_answering import load_qa_chain | |
########## CHAIN 1 norm text | |
def chain1(): | |
prompt_template = """Your job is to write a summary of the document such that every summary of the text is of 2 sentences | |
here is the content of the section: | |
"{text}" | |
SUMMARY:""" | |
prompt = PromptTemplate.from_template(prompt_template) | |
refine_template = ( | |
"Your job is to produce a final summary\n" | |
# "We have provided an existing summary up to a certain point: {existing_answer}\n" | |
"We have the opportunity to refine the existing summary" | |
"(only if needed) with some more context below.\n" | |
"------------\n" | |
"{text}\n" | |
"------------\n" | |
"Given the new context, refine the original summary in English" | |
"If the context isn't useful, return the original summary." ) | |
refine_prompt = PromptTemplate.from_template(refine_template) | |
chain1 = load_summarize_chain( | |
llm=HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
model_kwargs={"temperature":1, "max_length":10000}, | |
huggingfacehub_api_token=api_token), | |
chain_type="refine", | |
question_prompt=prompt, | |
# refine_prompt=refine_prompt, | |
return_intermediate_steps=False, | |
input_key="input_documents", | |
output_key="output_text", | |
) | |
return chain1 | |
# result = chain({"input_documents":split_docs}, return_only_outputs=True) | |
########## CHAIN 2 research paper | |
def chain2(): | |
prompt_template = """Your job is to write a summary of the document such that every summary of the text is of 2 sentences | |
here is the content of the section: | |
"{text}" | |
SUMMARY:""" | |
prompt = PromptTemplate.from_template(prompt_template) | |
refine_template = ( | |
"Your job is to produce a final summary\n" | |
# "We have provided an existing summary up to a certain point: {existing_answer}\n" | |
"We have the opportunity to refine the existing summary" | |
"(only if needed) with some more context below.\n" | |
"------------\n" | |
"{text}\n" | |
"------------\n" | |
"Given the new context, refine the original summary in English" | |
"If the context isn't useful, return the original summary." ) | |
refine_prompt = PromptTemplate.from_template(refine_template) | |
chain2 = load_summarize_chain( | |
llm = HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
model_kwargs={"temperature":1, "max_length":10000}, | |
huggingfacehub_api_token=api_token), | |
chain_type = "refine", | |
question_prompt = prompt, | |
# refine_prompt = refine_prompt, | |
return_intermediate_steps=False, | |
input_key="input_documents", | |
output_key="output_text", | |
) | |
return chain2 | |
# result = chain({"input_documents":split_docs}, return_only_outputs=True) | |
########## CHAIN 3 arxiv_paper_1 | |
def chain3(): | |
prompt_template = """You are being given a markdown document with headers, this is part of a larger arxiv paper. Your job is to write a summary of the document such that every summary of the text is of 2 sentences | |
here is the content of the section: | |
"{text}" | |
SUMMARY:""" | |
prompt = PromptTemplate.from_template(prompt_template) | |
refine_template = ("""You are presented with a collection of text snippets. Each snippet is a summary of a specific section from an academic paper published on arXiv. Your objective is to synthesize these snippets into a coherent, concise summary of the entire paper. | |
DOCUMENT SNIPPETS: | |
"{text}" | |
INSTRUCTIONS: Craft a concise summary below, capturing the essence of the paper based on the provided snippets. | |
It is also important that you highlight the key contributions of the paper, and 3 key takeaways from the paper. | |
Lastly you should provide a list of 5 questions that you would ask the author of the paper if you had the chance. Remove all the backslash n (\n) | |
SUMMARY: | |
""" | |
) | |
refine_prompt = PromptTemplate.from_template(refine_template) | |
chain3 = load_summarize_chain( | |
llm=HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
model_kwargs={"temperature":1, "max_length":10000}, | |
huggingfacehub_api_token=api_token), | |
chain_type="refine", | |
question_prompt=prompt, | |
# refine_prompt=refine_prompt, | |
return_intermediate_steps=False, | |
input_key="input_documents", | |
output_key="output_text", | |
) | |
return chain3 | |
# result = chain({"input_documents":split_docs}, return_only_outputs=True) | |
# chain.run(document) | |
# print(result["output_text"]) | |
def chain_function(checkbox_values): | |
if "Research Paper" in checkbox_values: | |
output = chain3() | |
elif "Legal Document" in checkbox_values: | |
output = chain2() | |
elif "Study Material" in checkbox_values: | |
output = chain1() | |
else: | |
output = "Please select a document type to run." | |
return output | |
def result(chain, split_docs): | |
summaries = [] | |
for doc in split_docs: | |
result = chain({"input_documents": [doc]}) | |
# result = chain({"input_documents": [doc]}, return_only_outputs=True) | |
summaries.append(result["output_text"]) | |
text_concat = "" | |
for i in summaries: | |
text_concat += i | |
# output = re.sub(r'\n'," "," ",text_concat) | |
return text_concat | |
title = """<p style="font-family:Century Gothic; text-align:center; font-size: 100px">S I M P L I F Y</p>""" | |
# description = r"""<p style="font-family: Century Gothic; text-align:center; font-size: 100px">S I M P L I F Y</p> | |
# """ | |
# article = r""" | |
# If PhotoMaker is helpful, please help to β the <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'>Github Repo</a>. Thanks! | |
# [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/PhotoMaker?style=social)](https://github.com/TencentARC/PhotoMaker) | |
# --- | |
# π **Citation** | |
# <br> | |
# If our work is useful for your research, please consider citing: | |
# ```bibtex | |
# @article{li2023photomaker, | |
# title={PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding}, | |
# author={Li, Zhen and Cao, Mingdeng and Wang, Xintao and Qi, Zhongang and Cheng, Ming-Ming and Shan, Ying}, | |
# booktitle={arXiv preprint arxiv:2312.04461}, | |
# year={2023} | |
# } | |
# ``` | |
# π **License** | |
# <br> | |
# Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/TencentARC/PhotoMaker/blob/main/LICENSE) for details. | |
# π§ **Contact** | |
# <br> | |
# If you have any questions, please feel free to reach me out at <b>zhenli1031@gmail.com</b>. | |
# """ | |
# tips = r""" | |
# ### Usage tips of PhotoMaker | |
# 1. Upload more photos of the person to be customized to **improve ID fidelty**. If the input is Asian face(s), maybe consider adding 'asian' before the class word, e.g., `asian woman img` | |
# 2. When stylizing, does the generated face look too realistic? Adjust the **Style strength** to 30-50, the larger the number, the less ID fidelty, but the stylization ability will be better. | |
# 3. If you want to generate realistic photos, you could try switching to our other gradio application [PhotoMaker](https://huggingface.co/spaces/TencentARC/PhotoMaker). | |
# 4. For **faster** speed, reduce the number of generated images and sampling steps. However, please note that reducing the sampling steps may compromise the ID fidelity. | |
# """ | |
# def process_file(file_obj): | |
# destination_path = "/content/sample_data" # Replace with your desired path | |
# shutil.copy(file_obj, destination_path) # Save file to specified path | |
# return os.path.join(destination_path, file_obj) | |
def process_file(list_file_obj): | |
# list_file_path = [x.name for x in list_file_obj if x is not None] | |
# file_content = file_obj.data | |
# with tempfile.TemporaryFile() as temp_file: | |
# temp_file.write(file_content) | |
# temp_file_path = temp_file.name | |
return list_file_obj[0].name | |
def inference(checkbox_values, uploaded_file): | |
file_path = process_file(uploaded_file) | |
split_docs = data_ingestion(file_path) | |
chain = chain_function(checkbox_values) | |
summary = result(chain, split_docs) | |
return summary | |
def main(): | |
with gr.Blocks(theme="monochrome") as demo: | |
gr.Markdown(title) | |
with gr.Row(): | |
with gr.Column(): | |
checkbox_values = gr.CheckboxGroup(["Research Paper", "Legal Document", "Study Material"], label="Choose the document type") | |
uploaded_file = gr.Files(height=100, file_count="multiple", file_types=["text", ".docx", "pdf"], interactive=True, label="Upload your File.") | |
btn = gr.Button("Submit") # Place the button outside the Row for vertical alignment | |
with gr.Column(): | |
txt = gr.Textbox( | |
show_label=False, | |
# placeholder="Simplify." | |
) | |
btn.click( | |
fn=inference, | |
inputs=[checkbox_values, uploaded_file], | |
outputs=[txt], | |
queue=False | |
) | |
if __init__ == "__main__": | |
# debug = True | |
demo.launch(debug = True) | |