Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
""" | |
FastSAM model interface. | |
Usage - Predict: | |
from ultralytics import FastSAM | |
model = FastSAM('last.pt') | |
results = model.predict('ultralytics/assets/bus.jpg') | |
""" | |
from ultralytics.yolo.cfg import get_cfg | |
from ultralytics.yolo.engine.exporter import Exporter | |
from ultralytics.yolo.engine.model import YOLO | |
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, ROOT, is_git_dir | |
from ultralytics.yolo.utils.checks import check_imgsz | |
from ultralytics.yolo.utils.torch_utils import model_info, smart_inference_mode | |
from .predict import FastSAMPredictor | |
class FastSAM(YOLO): | |
def predict(self, source=None, stream=False, **kwargs): | |
""" | |
Perform prediction using the YOLO model. | |
Args: | |
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. | |
Accepts all source types accepted by the YOLO model. | |
stream (bool): Whether to stream the predictions or not. Defaults to False. | |
**kwargs : Additional keyword arguments passed to the predictor. | |
Check the 'configuration' section in the documentation for all available options. | |
Returns: | |
(List[ultralytics.yolo.engine.results.Results]): The prediction results. | |
""" | |
if source is None: | |
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' | |
LOGGER.warning(f"WARNING β οΈ 'source' is missing. Using 'source={source}'.") | |
overrides = self.overrides.copy() | |
overrides['conf'] = 0.25 | |
overrides.update(kwargs) # prefer kwargs | |
overrides['mode'] = kwargs.get('mode', 'predict') | |
assert overrides['mode'] in ['track', 'predict'] | |
overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python | |
self.predictor = FastSAMPredictor(overrides=overrides) | |
self.predictor.setup_model(model=self.model, verbose=False) | |
try: | |
return self.predictor(source, stream=stream) | |
except Exception as e: | |
return None | |
def train(self, **kwargs): | |
"""Function trains models but raises an error as FastSAM models do not support training.""" | |
raise NotImplementedError("Currently, the training codes are on the way.") | |
def val(self, **kwargs): | |
"""Run validation given dataset.""" | |
overrides = dict(task='segment', mode='val') | |
overrides.update(kwargs) # prefer kwargs | |
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
args.imgsz = check_imgsz(args.imgsz, max_dim=1) | |
validator = FastSAM(args=args) | |
validator(model=self.model) | |
self.metrics = validator.metrics | |
return validator.metrics | |
def export(self, **kwargs): | |
""" | |
Export model. | |
Args: | |
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs | |
""" | |
overrides = dict(task='detect') | |
overrides.update(kwargs) | |
overrides['mode'] = 'export' | |
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
args.task = self.task | |
if args.imgsz == DEFAULT_CFG.imgsz: | |
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed | |
if args.batch == DEFAULT_CFG.batch: | |
args.batch = 1 # default to 1 if not modified | |
return Exporter(overrides=args)(model=self.model) | |
def info(self, detailed=False, verbose=True): | |
""" | |
Logs model info. | |
Args: | |
detailed (bool): Show detailed information about model. | |
verbose (bool): Controls verbosity. | |
""" | |
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640) | |
def __call__(self, source=None, stream=False, **kwargs): | |
"""Calls the 'predict' function with given arguments to perform object detection.""" | |
return self.predict(source, stream, **kwargs) | |
def __getattr__(self, attr): | |
"""Raises error if object has no requested attribute.""" | |
name = self.__class__.__name__ | |
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") | |