Spaces:
Sleeping
Sleeping
anilbhatt1
commited on
Commit
•
80d1ab2
1
Parent(s):
902ac2f
Initial commit
Browse files- .gitignore +7 -0
- app.py +228 -0
- requirements.txt +4 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio_cached_examples/
|
2 |
+
*.png
|
3 |
+
*.jpg
|
4 |
+
flagged/
|
5 |
+
*.pt
|
6 |
+
*.json
|
7 |
+
*.npy
|
app.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import json
|
6 |
+
import gradio as gr
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import timm
|
13 |
+
from transformers import DistilBertModel, DistilBertConfig, DistilBertTokenizer
|
14 |
+
|
15 |
+
class CFG:
|
16 |
+
image_path = './images'
|
17 |
+
captions_path = './captions'
|
18 |
+
batch_size = 64
|
19 |
+
num_workers = 4
|
20 |
+
head_lr = 1e-3
|
21 |
+
image_encoder_lr = 1e-4
|
22 |
+
text_encoder_lr = 1e-5
|
23 |
+
weight_decay = 1e-3
|
24 |
+
patience = 1
|
25 |
+
factor = 0.8
|
26 |
+
epochs = 2
|
27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
|
29 |
+
model_name = 'resnet50'
|
30 |
+
image_embedding = 2048
|
31 |
+
text_encoder_model = "distilbert-base-uncased"
|
32 |
+
text_embedding = 768
|
33 |
+
text_tokenizer = "distilbert-base-uncased"
|
34 |
+
max_length = 200
|
35 |
+
|
36 |
+
pretrained = True # for both image encoder and text encoder
|
37 |
+
trainable = True # for both image encoder and text encoder
|
38 |
+
temperature = 1.0
|
39 |
+
|
40 |
+
# image size
|
41 |
+
size = 224
|
42 |
+
|
43 |
+
# for projection head; used for both image and text encoders
|
44 |
+
num_projection_layers = 1
|
45 |
+
projection_dim = 256
|
46 |
+
dropout = 0.1
|
47 |
+
|
48 |
+
class ImageEncoder(nn.Module):
|
49 |
+
"""
|
50 |
+
Encode images to a fixed size vector
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self, model_name=CFG.model_name, pretrained=CFG.pretrained, trainable=CFG.trainable
|
55 |
+
):
|
56 |
+
super().__init__()
|
57 |
+
self.model = timm.create_model(
|
58 |
+
model_name, pretrained, num_classes=0, global_pool="avg"
|
59 |
+
)
|
60 |
+
for p in self.model.parameters():
|
61 |
+
p.requires_grad = trainable
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
return self.model(x)
|
65 |
+
|
66 |
+
class TextEncoder(nn.Module):
|
67 |
+
def __init__(self, model_name=CFG.text_encoder_model, pretrained=CFG.pretrained, trainable=CFG.trainable):
|
68 |
+
super().__init__()
|
69 |
+
if pretrained:
|
70 |
+
self.model = DistilBertModel.from_pretrained(model_name)
|
71 |
+
else:
|
72 |
+
self.model = DistilBertModel(config=DistilBertConfig())
|
73 |
+
|
74 |
+
for p in self.model.parameters():
|
75 |
+
p.requires_grad = trainable
|
76 |
+
|
77 |
+
# we are using the CLS token hidden representation as the sentence's embedding
|
78 |
+
self.target_token_idx = 0
|
79 |
+
|
80 |
+
def forward(self, input_ids, attention_mask):
|
81 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
82 |
+
last_hidden_state = output.last_hidden_state
|
83 |
+
return last_hidden_state[:, self.target_token_idx, :]
|
84 |
+
|
85 |
+
class ProjectionHead(nn.Module):
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
embedding_dim,
|
89 |
+
projection_dim=CFG.projection_dim,
|
90 |
+
dropout=CFG.dropout
|
91 |
+
):
|
92 |
+
super().__init__()
|
93 |
+
self.projection = nn.Linear(embedding_dim, projection_dim)
|
94 |
+
self.gelu = nn.GELU()
|
95 |
+
self.fc = nn.Linear(projection_dim, projection_dim)
|
96 |
+
self.dropout = nn.Dropout(dropout)
|
97 |
+
self.layer_norm = nn.LayerNorm(projection_dim)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
projected = self.projection(x)
|
101 |
+
x = self.gelu(projected)
|
102 |
+
x = self.fc(x)
|
103 |
+
x = self.dropout(x)
|
104 |
+
x = x + projected
|
105 |
+
x = self.layer_norm(x)
|
106 |
+
return x
|
107 |
+
|
108 |
+
class CLIPModel(nn.Module):
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
temperature=CFG.temperature,
|
112 |
+
image_embedding=CFG.image_embedding,
|
113 |
+
text_embedding=CFG.text_embedding,
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
self.image_encoder = ImageEncoder()
|
117 |
+
self.text_encoder = TextEncoder()
|
118 |
+
self.image_projection = ProjectionHead(embedding_dim=image_embedding)
|
119 |
+
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
|
120 |
+
self.temperature = temperature
|
121 |
+
|
122 |
+
def forward(self, batch):
|
123 |
+
# Getting Image and Text Features
|
124 |
+
image_features = self.image_encoder(batch["image"])
|
125 |
+
text_features = self.text_encoder(
|
126 |
+
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
|
127 |
+
)
|
128 |
+
# Getting Image and Text Embeddings (with same dimension)
|
129 |
+
image_embeddings = self.image_projection(image_features)
|
130 |
+
text_embeddings = self.text_projection(text_features)
|
131 |
+
|
132 |
+
# Calculating the Loss
|
133 |
+
images_similarity = image_embeddings @ text_embeddings.T / self.temperature
|
134 |
+
texts_similarity = images_similarity.T
|
135 |
+
labels = torch.arange(batch["image"].shape[0]).long().to(CFG.device)
|
136 |
+
|
137 |
+
total_loss = (
|
138 |
+
F.cross_entropy(images_similarity, labels) +
|
139 |
+
F.cross_entropy(texts_similarity, labels)
|
140 |
+
) / 2
|
141 |
+
|
142 |
+
return total_loss
|
143 |
+
|
144 |
+
def find_matches_cpu(model, image_embeddings, query, image_filenames, n=4):
|
145 |
+
tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
|
146 |
+
encoded_query = tokenizer([query])
|
147 |
+
batch = {
|
148 |
+
key: torch.tensor(values).to('cpu')
|
149 |
+
for key, values in encoded_query.items()
|
150 |
+
}
|
151 |
+
with torch.no_grad():
|
152 |
+
text_features = model.text_encoder(
|
153 |
+
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
|
154 |
+
)
|
155 |
+
text_embeddings = model.text_projection(text_features)
|
156 |
+
|
157 |
+
image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
|
158 |
+
text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
|
159 |
+
dot_similarity = text_embeddings_n @ image_embeddings_n.T
|
160 |
+
|
161 |
+
values, indices = torch.topk(dot_similarity.squeeze(0), n * 5)
|
162 |
+
matches = [image_filenames[idx] for idx in indices[::5]]
|
163 |
+
return matches
|
164 |
+
|
165 |
+
def rle_decode(img_rle_array, img_name, img_size):
|
166 |
+
encoded_image = img_rle_array
|
167 |
+
# Initialize variables for decoding
|
168 |
+
decoded_image = []
|
169 |
+
for i in range(0, len(encoded_image), 2):
|
170 |
+
pixel_value = encoded_image[i]
|
171 |
+
run_length = encoded_image[i + 1]
|
172 |
+
decoded_image.extend([pixel_value] * run_length)
|
173 |
+
|
174 |
+
# Convert the decoded image back to a NumPy array
|
175 |
+
decoded_array = np.array(decoded_image, dtype=np.uint8)
|
176 |
+
|
177 |
+
# Reshape the decoded array to the original image shape (224, 224)
|
178 |
+
decoded_image = decoded_array.reshape(img_size) # Use original shape
|
179 |
+
|
180 |
+
# Create a PIL Image from the decoded array
|
181 |
+
decoded_image = Image.fromarray(decoded_image)
|
182 |
+
|
183 |
+
decoded_image_save_path = './' + str(img_name)
|
184 |
+
# Save or display the decoded image
|
185 |
+
decoded_image.save(decoded_image_save_path) # Save the decoded image to a file
|
186 |
+
return decoded_image_save_path
|
187 |
+
|
188 |
+
def get_matched_image(matches, val_file_dict_loaded):
|
189 |
+
img_size = (112, 112)
|
190 |
+
match_img_list = []
|
191 |
+
for img_name in matches:
|
192 |
+
img_rle_array = val_file_dict_loaded[img_name]
|
193 |
+
decoded_image_path = rle_decode(img_rle_array, img_name, img_size)
|
194 |
+
match_img_list.append(decoded_image_path)
|
195 |
+
return match_img_list
|
196 |
+
|
197 |
+
def get_grayscale_image(text_query):
|
198 |
+
model_inf = CLIPModel().to('cpu')
|
199 |
+
model_inf.load_state_dict(torch.load('./best_clip_model_cpu.pt', map_location='cpu'))
|
200 |
+
|
201 |
+
clip_image_embeddings_np_inf = np.load('./clip_image_embeddings.npy')
|
202 |
+
image_embeddings_inf = torch.tensor(clip_image_embeddings_np_inf)
|
203 |
+
|
204 |
+
img_file_names = np.load('./val_img_file_names.npy',allow_pickle=True)
|
205 |
+
|
206 |
+
with open("./val_imgs_rle_encode.json", "r") as json_file:
|
207 |
+
val_file_dict_loaded = json.load(json_file)
|
208 |
+
|
209 |
+
matches = find_matches_cpu(model_inf,
|
210 |
+
image_embeddings_inf,
|
211 |
+
query=text_query,
|
212 |
+
image_filenames=img_file_names,
|
213 |
+
n=1)
|
214 |
+
|
215 |
+
matched_images = get_matched_image(matches, val_file_dict_loaded)
|
216 |
+
return matched_images
|
217 |
+
|
218 |
+
def gradio_fn(text):
|
219 |
+
text_query = str(text)
|
220 |
+
match_img_list = get_grayscale_image(text_query)
|
221 |
+
pil_img = Image.open(match_img_list[0])
|
222 |
+
pil_img = pil_img.resize((224, 224))
|
223 |
+
np_img_array = np.array(pil_img)
|
224 |
+
return np_img_array
|
225 |
+
|
226 |
+
demo = gr.Interface(fn=gradio_fn, inputs="text", outputs="image", title="CLIP Image Search")
|
227 |
+
|
228 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
gradio
|
3 |
+
timm
|
4 |
+
torch
|