Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from pydantic import BaseModel | |
import pickle | |
import numpy as np | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import RedirectResponse | |
# Cargar el modelo desde el archivo .pkl | |
with open("miarbolcancer.pkl", "rb") as f: | |
model = pickle.load(f) | |
# Definir el modelo de datos con Pydantic (sin ca_cervix como entrada) | |
class PredictionInput(BaseModel): | |
behavior_sexualRisk: float | |
behavior_eating: float | |
behavior_personalHygine: float | |
intention_aggregation: float | |
intention_commitment: float | |
attitude_consistency: float | |
attitude_spontaneity: float | |
norm_significantPerson: float | |
norm_fulfillment: float | |
perception_vulnerability: float | |
perception_severity: float | |
motivation_strength: float | |
motivation_willingness: float | |
socialSupport_emotionality: float | |
socialSupport_appreciation: float | |
socialSupport_instrumental: float | |
empowerment_knowledge: float | |
empowerment_abilities: float | |
empowerment_desires: float | |
# Crear la aplicaci贸n FastAPI | |
app = FastAPI() | |
# CORS | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Redirigir de "/" a "/docs" | |
def redirect_to_docs(): | |
return RedirectResponse(url="/docs") | |
# Definir el endpoint de predicci贸n | |
def predict(input_data: PredictionInput): | |
# Convertir los datos de entrada en un array numpy | |
input_array = np.array([[input_data.behavior_sexualRisk, input_data.behavior_eating, input_data.behavior_personalHygine, | |
input_data.intention_aggregation, input_data.intention_commitment, input_data.attitude_consistency, | |
input_data.attitude_spontaneity, input_data.norm_significantPerson, input_data.norm_fulfillment, | |
input_data.perception_vulnerability, input_data.perception_severity, input_data.motivation_strength, | |
input_data.motivation_willingness, input_data.socialSupport_emotionality, input_data.socialSupport_appreciation, | |
input_data.socialSupport_instrumental, input_data.empowerment_knowledge, input_data.empowerment_abilities, | |
input_data.empowerment_desires]]) | |
# Realizar la predicci贸n (el modelo debe predecir ca_cervix) | |
prediction = model.predict(input_array) | |
# Convertir la predicci贸n a tipo nativo Python (int o float) | |
prediction_value = prediction[0] if isinstance(prediction[0], (int, float)) else prediction[0].item() | |
# Retornar la predicci贸n (ca_cervix) | |
return {"ca_cervix_prediction": prediction_value} | |