Spaces:
Running
Running
import time | |
import torch | |
import onnx | |
import cv2 | |
import onnxruntime | |
import numpy as np | |
from tqdm import tqdm | |
from onnx import numpy_helper | |
from skimage import transform as trans | |
import torchvision.transforms.functional as F | |
from utils import make_white_image, laplacian_blending | |
arcface_dst = np.array( | |
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], | |
[41.5493, 92.3655], [70.7299, 92.2041]], | |
dtype=np.float32) | |
def estimate_norm(lmk, image_size=112, mode='arcface'): | |
assert lmk.shape == (5, 2) | |
assert image_size % 112 == 0 or image_size % 128 == 0 | |
if image_size % 112 == 0: | |
ratio = float(image_size) / 112.0 | |
diff_x = 0 | |
else: | |
ratio = float(image_size) / 128.0 | |
diff_x = 8.0 * ratio | |
dst = arcface_dst * ratio | |
dst[:, 0] += diff_x | |
tform = trans.SimilarityTransform() | |
tform.estimate(lmk, dst) | |
M = tform.params[0:2, :] | |
return M | |
def norm_crop2(img, landmark, image_size=112, mode='arcface'): | |
M = estimate_norm(landmark, image_size, mode) | |
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) | |
return warped, M | |
class Inswapper(): | |
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']): | |
self.model_file = model_file | |
self.batch_size = batch_size | |
model = onnx.load(self.model_file) | |
graph = model.graph | |
self.emap = numpy_helper.to_array(graph.initializer[-1]) | |
self.input_mean = 0.0 | |
self.input_std = 255.0 | |
self.session_options = onnxruntime.SessionOptions() | |
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers) | |
inputs = self.session.get_inputs() | |
self.input_names = [inp.name for inp in inputs] | |
outputs = self.session.get_outputs() | |
self.output_names = [out.name for out in outputs] | |
assert len(self.output_names) == 1 | |
self.output_shape = outputs[0].shape | |
input_cfg = inputs[0] | |
input_shape = input_cfg.shape | |
self.input_shape = input_shape | |
self.input_size = tuple(input_shape[2:4][::-1]) | |
def forward(self, imgs, latents): | |
preds = [] | |
for img, latent in zip(imgs, latents): | |
img = (img - self.input_mean) / self.input_std | |
pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0] | |
preds.append(pred) | |
def get(self, imgs, target_faces, source_faces): | |
imgs = list(imgs) | |
preds = [None] * len(imgs) | |
aimgs = [None] * len(imgs) | |
matrs = [None] * len(imgs) | |
for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)): | |
aimg, M, blob, latent = self.prepare_data(img, target_face, source_face) | |
aimgs[idx] = aimg | |
matrs[idx] = M | |
pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0] | |
pred = pred.transpose((0, 2, 3, 1))[0] | |
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1] | |
preds[idx] = pred | |
return (preds, aimgs, matrs) | |
def prepare_data(self, img, target_face, source_face): | |
if isinstance(img, str): | |
img = cv2.imread(img) | |
aimg, M = norm_crop2(img, target_face.kps, self.input_size[0]) | |
blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size, | |
(self.input_mean, self.input_mean, self.input_mean), swapRB=True) | |
latent = source_face.normed_embedding.reshape((1, -1)) | |
latent = np.dot(latent, self.emap) | |
latent /= np.linalg.norm(latent) | |
return (aimg, M, blob, latent) | |
def batch_forward(self, img_list, target_f_list, source_f_list): | |
num_samples = len(img_list) | |
num_batches = (num_samples + self.batch_size - 1) // self.batch_size | |
preds = [] | |
aimgs = [] | |
matrs = [] | |
for i in tqdm(range(num_batches), desc="Swapping face"): | |
start_idx = i * self.batch_size | |
end_idx = min((i + 1) * self.batch_size, num_samples) | |
batch_img = img_list[start_idx:end_idx] | |
batch_target_f = target_f_list[start_idx:end_idx] | |
batch_source_f = source_f_list[start_idx:end_idx] | |
batch_pred, batch_aimg, batch_matr = self.get(batch_img, batch_target_f, batch_source_f) | |
preds.extend(batch_pred) | |
aimgs.extend(batch_aimg) | |
matrs.extend(batch_matr) | |
return (preds, aimgs, matrs) | |
def paste_to_whole(bgr_fake, aimg, M, whole_img, laplacian_blend=True, crop_mask=(0,0,0,0)): | |
IM = cv2.invertAffineTransform(M) | |
img_white = make_white_image(aimg.shape[:2], crop=crop_mask, white_value=255) | |
bgr_fake = cv2.warpAffine(bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0) | |
img_white = cv2.warpAffine(img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0) | |
img_white[img_white > 20] = 255 | |
img_mask = img_white | |
mask_h_inds, mask_w_inds = np.where(img_mask == 255) | |
mask_size = int(np.sqrt(np.ptp(mask_h_inds) * np.ptp(mask_w_inds))) | |
k = max(mask_size // 10, 10) | |
img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1) | |
k = max(mask_size // 20, 5) | |
kernel_size = (k, k) | |
blur_size = tuple(2 * i + 1 for i in kernel_size) | |
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) / 255 | |
img_mask = np.tile(np.expand_dims(img_mask, axis=-1), (1, 1, 3)) | |
if laplacian_blend: | |
bgr_fake = laplacian_blending(bgr_fake.astype("float32").clip(0,255), whole_img.astype("float32").clip(0,255), img_mask.clip(0,1)) | |
bgr_fake = bgr_fake.astype("float32") | |
fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32) | |
return fake_merged.astype("uint8") | |
def place_foreground_on_background(foreground, background, matrix): | |
matrix = cv2.invertAffineTransform(matrix) | |
mask = np.ones(foreground.shape, dtype="float32") | |
foreground = cv2.warpAffine(foreground, matrix, (background.shape[1], background.shape[0]), borderValue=0.0) | |
mask = cv2.warpAffine(mask, matrix, (background.shape[1], background.shape[0]), borderValue=0.0) | |
composite_image = mask * foreground + (1 - mask) * background | |
return composite_image |