Ateeqq's picture
Update app.py
91dd8c5 verified
import gradio as gr
import spaces
import torch
import transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_name,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cpu",
)
@spaces.GPU
def chat_function(message, history, system_prompt,max_new_tokens,temperature):
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": message},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
temp = temperature + 0.1
outputs = pipeline(
prompt,
max_new_tokens=max_new_tokens,
eos_token_id=terminators,
do_sample=True,
temperature=temp,
top_p=0.9,
)
return outputs[0]["generated_text"][len(prompt):]
gr.ChatInterface(
chat_function,
chatbot=gr.Chatbot(height=400),
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
title="Meta-Llama-3-8B-Instruct",
description="""
To Learn about Fine-tuning Llama-3-8B, Ckeck https://exnrt.com/blog/ai/finetune-llama3-8b/.
""",
additional_inputs=[
gr.Textbox("You are helpful AI.", label="System Prompt"),
gr.Slider(512, 4096, label="Max New Tokens"),
gr.Slider(0, 1, label="Temperature")
]
).launch()
#The Code