|
import json |
|
|
|
import requests |
|
|
|
from datasets import load_dataset |
|
|
|
import gradio as gr |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
|
|
|
from huggingface_hub import HfApi, hf_hub_download |
|
from huggingface_hub.repocard import metadata_load |
|
import pandas as pd |
|
|
|
from utils import * |
|
|
|
|
|
block = gr.Blocks() |
|
|
|
|
|
rl_envs = [ |
|
{ |
|
"rl_env_beautiful": "LunarLander-v2 π", |
|
"rl_env": "LunarLander-v2", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "CartPole-v1", |
|
"rl_env": "CartPole-v1", |
|
"video_link": "https://huggingface.co/sb3/ppo-CartPole-v1/resolve/main/replay.mp4", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "FrozenLake-v1-4x4-no_slippery βοΈ", |
|
"rl_env": "FrozenLake-v1-4x4-no_slippery", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "FrozenLake-v1-8x8-no_slippery βοΈ", |
|
"rl_env": "FrozenLake-v1-8x8-no_slippery", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "FrozenLake-v1-4x4 βοΈ", |
|
"rl_env": "FrozenLake-v1-4x4", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "FrozenLake-v1-8x8 βοΈ", |
|
"rl_env": "FrozenLake-v1-8x8", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "Taxi-v3 π", |
|
"rl_env": "Taxi-v3", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "CarRacing-v0 ποΈ", |
|
"rl_env": "CarRacing-v0", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "MountainCar-v0 β°οΈ", |
|
"rl_env": "MountainCar-v0", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "SpaceInvadersNoFrameskip-v4 πΎ", |
|
"rl_env": "SpaceInvadersNoFrameskip-v4", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "PongNoFrameskip-v4 πΎ", |
|
"rl_env": "PongNoFrameskip-v4", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "BreakoutNoFrameskip-v4 π§±", |
|
"rl_env": "BreakoutNoFrameskip-v4", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "QbertNoFrameskip-v4 π¦", |
|
"rl_env": "QbertNoFrameskip-v4", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "BipedalWalker-v3", |
|
"rl_env": "BipedalWalker-v3", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "Walker2DBulletEnv-v0", |
|
"rl_env": "Walker2DBulletEnv-v0", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "AntBulletEnv-v0", |
|
"rl_env": "AntBulletEnv-v0", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "HalfCheetahBulletEnv-v0", |
|
"rl_env": "HalfCheetahBulletEnv-v0", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "PandaReachDense-v2", |
|
"rl_env": "PandaReachDense-v2", |
|
"video_link": "", |
|
"global": None |
|
}, |
|
{ |
|
"rl_env_beautiful": "Pixelcopter-PLE-v0", |
|
"rl_env": "Pixelcopter-PLE-v0", |
|
"video_link": "", |
|
"global": None |
|
} |
|
] |
|
|
|
|
|
|
|
def get_metadata(model_id): |
|
try: |
|
readme_path = hf_hub_download(model_id, filename="README.md") |
|
return metadata_load(readme_path) |
|
except requests.exceptions.HTTPError: |
|
|
|
return None |
|
|
|
def parse_metrics_accuracy(meta): |
|
if "model-index" not in meta: |
|
return None |
|
result = meta["model-index"][0]["results"] |
|
metrics = result[0]["metrics"] |
|
accuracy = metrics[0]["value"] |
|
return accuracy |
|
|
|
|
|
def parse_rewards(accuracy): |
|
default_std = -1000 |
|
default_reward=-1000 |
|
if accuracy != None: |
|
accuracy = str(accuracy) |
|
parsed = accuracy.split(' +/- ') |
|
if len(parsed)>1: |
|
mean_reward = float(parsed[0]) |
|
std_reward = float(parsed[1]) |
|
elif len(parsed)==1: |
|
mean_reward = float(parsed[0]) |
|
std_reward = float(0) |
|
|
|
else: |
|
mean_reward = float(default_std) |
|
std_reward = float(default_reward) |
|
|
|
else: |
|
mean_reward = float(default_std) |
|
std_reward = float(default_reward) |
|
return mean_reward, std_reward |
|
|
|
|
|
def get_model_ids(rl_env): |
|
api = HfApi() |
|
models = api.list_models(filter=rl_env) |
|
model_ids = [x.modelId for x in models] |
|
|
|
return model_ids |
|
|
|
def get_model_dataframe(rl_env): |
|
|
|
model_ids = get_model_ids(rl_env) |
|
|
|
data = [] |
|
for model_id in model_ids: |
|
""" |
|
readme_path = hf_hub_download(model_id, filename="README.md") |
|
meta = metadata_load(readme_path) |
|
""" |
|
meta = get_metadata(model_id) |
|
|
|
if meta is None: |
|
continue |
|
user_id = model_id.split('/')[0] |
|
row = {} |
|
row["User"] = make_clickable_user(user_id) |
|
row["Model"] = make_clickable_model(model_id) |
|
accuracy = parse_metrics_accuracy(meta) |
|
mean_reward, std_reward = parse_rewards(accuracy) |
|
mean_reward = mean_reward if not pd.isna(mean_reward) else 0 |
|
std_reward = std_reward if not pd.isna(std_reward) else 0 |
|
row["Results"] = mean_reward - std_reward |
|
row["Mean Reward"] = mean_reward |
|
row["Std Reward"] = std_reward |
|
data.append(row) |
|
print("DATA", data) |
|
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data)) |
|
print("RANKED", ranked_dataframe) |
|
return ranked_dataframe |
|
|
|
|
|
def rank_dataframe(dataframe): |
|
|
|
dataframe = dataframe.sort_values(by=['Results'], ascending=False) |
|
if not 'Ranking' in dataframe.columns: |
|
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)]) |
|
else: |
|
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)] |
|
return dataframe |
|
|
|
|
|
with block: |
|
gr.Markdown(f""" |
|
# π The Deep Reinforcement Learning Course Leaderboard π |
|
|
|
This is the leaderboard of trained agents during the Deep Reinforcement Learning Course. A free course from beginner to expert. |
|
|
|
Just choose which environment you trained your agent on and with Ctrl+F find your rank π |
|
|
|
**The leaderboard is updated every hour. If you don't find your model, go to the bottom of the page and click on the refresh button** |
|
|
|
We use **lower bound result to sort the models: mean_reward - std_reward.** |
|
|
|
You **can click on the model's name** to be redirected to its model card which includes documentation. |
|
|
|
π€ You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course π€ </a>. |
|
|
|
You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo π </a>. |
|
|
|
π§ There is an **environment missing?** Please open an issue. |
|
|
|
For the RL course progress check out <a href="https://huggingface.co/spaces/ThomasSimonini/Check-my-progress-Deep-RL-Course" target="_blank"> User Progress App </a> |
|
""") |
|
|
|
|
|
for i in range(0, len(rl_envs)): |
|
rl_env = rl_envs[i] |
|
|
|
with gr.TabItem(rl_env["rl_env_beautiful"]) as rl_tab: |
|
with gr.Row(): |
|
markdown = """ |
|
# {name_leaderboard} |
|
|
|
""".format(name_leaderboard = rl_env["rl_env_beautiful"], video_link = rl_env["video_link"]) |
|
gr.Markdown(markdown) |
|
with gr.Row(): |
|
rl_env["global"] = gr.components.Dataframe(value= get_model_dataframe(rl_env["rl_env"]), headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"]) |
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
|
|
val = gr.Variable(value=[rl_env["rl_env"]]) |
|
data_run.click(get_model_dataframe, inputs=[val], outputs =rl_env["global"]) |
|
|
|
|
|
block.launch() |
|
|
|
def refresh_leaderboard(): |
|
""" |
|
Here we refresh the leaderboard: |
|
we update the rl_env["global"] for each rl_envs in rl_env |
|
""" |
|
for i in range(0, len(rl_envs)): |
|
rl_env = rl_envs[i] |
|
temp = get_model_dataframe(rl_env) |
|
rl_env["global"] = temp |
|
print("The leaderboard has been updated") |
|
|
|
scheduler = BackgroundScheduler() |
|
|
|
scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=3600) |
|
scheduler.start() |
|
|
|
|