Spaces:
Sleeping
Sleeping
from pymongo import MongoClient | |
# error since Jan 2024, from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain_community.embeddings import OpenAIEmbeddings | |
# error since Jan 2024, from langchain.vectorstores import MongoDBAtlasVectorSearch | |
from langchain_community.vectorstores import MongoDBAtlasVectorSearch | |
# error since Jan 2024, from langchain.document_loaders import DirectoryLoader | |
from langchain_community.document_loaders import DirectoryLoader | |
# error since Jan 2024, from langchain.llms import OpenAI | |
from langchain_community.llms import OpenAI | |
from langchain.chains import RetrievalQA | |
import gradio as gr | |
from gradio.themes.base import Base | |
#import key_param | |
import os | |
def query_data(query,openai_api_key,mongo_uri): | |
#openai_api_key = os.getenv("OPENAI_API_KEY") | |
#mongo_uri = os.getenv("MONGO_URI") | |
client = MongoClient(mongo_uri) | |
dbName = "langchain_demo" | |
collectionName = "collection_of_text_blobs" | |
collection = client[dbName][collectionName] | |
# Define the text embedding model | |
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
# Initialize the Vector Store | |
vectorStore = MongoDBAtlasVectorSearch( collection, embeddings, index_name="default" ) | |
# Convert question to vector using OpenAI embeddings | |
# Perform Atlas Vector Search using Langchain's vectorStore | |
# similarity_search returns MongoDB documents most similar to the query | |
docs = vectorStore.similarity_search(query, K=1) | |
as_output = docs[0].page_content | |
# Leveraging Atlas Vector Search paired with Langchain's QARetriever | |
# Define the LLM that we want to use -- note that this is the Language Generation Model and NOT an Embedding Model | |
# If it's not specified (for example like in the code below), | |
# then the default OpenAI model used in LangChain is OpenAI GPT-3.5-turbo, as of August 30, 2023 | |
llm = OpenAI(openai_api_key=openai_api_key, temperature=0, model_name='gpt-4-1106-preview') | |
# Get VectorStoreRetriever: Specifically, Retriever for MongoDB VectorStore. | |
# Implements _get_relevant_documents which retrieves documents relevant to a query. | |
retriever = vectorStore.as_retriever() | |
# Load "stuff" documents chain. Stuff documents chain takes a list of documents, | |
# inserts them all into a prompt and passes that prompt to an LLM. | |
qa = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=retriever, model_name='gpt-4-1106-preview') | |
# Execute the chain | |
retriever_output = qa.run(query) | |
# Return Atlas Vector Search output, and output generated using RAG Architecture | |
return as_output, retriever_output | |
# Create a web interface for the app, using Gradio | |
with gr.Blocks(theme=Base(), title="Question Answering App using Vector Search + RAG") as demo: | |
gr.Markdown( | |
""" | |
# Question Answering App using Atlas Vector Search + RAG Architecture | |
""") | |
openai_api_key = gr.Textbox(label = "OpenAI 3.5 API Key", value = "sk-", lines = 1) | |
mongo_uri = gr.Textbox(label = "Mongo URI", value = "mongodb+srv://", lines = 1) | |
textbox = gr.Textbox(label="Enter your Question:") | |
with gr.Row(): | |
button = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
output1 = gr.Textbox(lines=1, max_lines=10, label="Output with just Atlas Vector Search (returns text field as is):") | |
output2 = gr.Textbox(lines=1, max_lines=10, label="Output generated by chaining Atlas Vector Search to Langchain's RetrieverQA + OpenAI LLM:") | |
# Call query_data function upon clicking the Submit button | |
button.click(query_data, | |
inputs=[textbox, openai_api_key, mongo_uri], | |
outputs=[output1, output2] | |
) | |
demo.launch() | |