liuyizhang
add transformers_4_35_0
1ce5e18
# Copyright 2023 The HuggingFace Team. All rights reserved.
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
"""
Helper function to read an audio file through ffmpeg.
"""
ar = f"{sampling_rate}"
ac = "1"
format_for_conversion = "f32le"
ffmpeg_command = [
"ffmpeg",
"-i",
"pipe:0",
"-ac",
ac,
"-ar",
ar,
"-f",
format_for_conversion,
"-hide_banner",
"-loglevel",
"quiet",
"pipe:1",
]
try:
with subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) as ffmpeg_process:
output_stream = ffmpeg_process.communicate(bpayload)
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to load audio files from filename") from error
out_bytes = output_stream[0]
audio = np.frombuffer(out_bytes, np.float32)
if audio.shape[0] == 0:
raise ValueError(
"Soundfile is either not in the correct format or is malformed. Ensure that the soundfile has "
"a valid audio file extension (e.g. wav, flac or mp3) and is not corrupted. If reading from a remote "
"URL, ensure that the URL is the full address to **download** the audio file."
)
return audio
def ffmpeg_microphone(
sampling_rate: int,
chunk_length_s: float,
format_for_conversion: str = "f32le",
):
"""
Helper function ro read raw microphone data.
"""
ar = f"{sampling_rate}"
ac = "1"
if format_for_conversion == "s16le":
size_of_sample = 2
elif format_for_conversion == "f32le":
size_of_sample = 4
else:
raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`")
system = platform.system()
if system == "Linux":
format_ = "alsa"
input_ = "default"
elif system == "Darwin":
format_ = "avfoundation"
input_ = ":0"
elif system == "Windows":
format_ = "dshow"
input_ = "default"
ffmpeg_command = [
"ffmpeg",
"-f",
format_,
"-i",
input_,
"-ac",
ac,
"-ar",
ar,
"-f",
format_for_conversion,
"-fflags",
"nobuffer",
"-hide_banner",
"-loglevel",
"quiet",
"pipe:1",
]
chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample
iterator = _ffmpeg_stream(ffmpeg_command, chunk_len)
for item in iterator:
yield item
def ffmpeg_microphone_live(
sampling_rate: int,
chunk_length_s: float,
stream_chunk_s: Optional[int] = None,
stride_length_s: Optional[Union[Tuple[float, float], float]] = None,
format_for_conversion: str = "f32le",
):
"""
Helper function to read audio from the microphone file through ffmpeg. This will output `partial` overlapping
chunks starting from `stream_chunk_s` (if it is defined) until `chunk_length_s` is reached. It will make use of
striding to avoid errors on the "sides" of the various chunks.
Arguments:
sampling_rate (`int`):
The sampling_rate to use when reading the data from the microphone. Try using the model's sampling_rate to
avoid resampling later.
chunk_length_s (`float` or `int`):
The length of the maximum chunk of audio to be sent returned. This includes the eventual striding.
stream_chunk_s (`float` or `int`)
The length of the minimal temporary audio to be returned.
stride_length_s (`float` or `int` or `(float, float)`, *optional*, defaults to `None`)
The length of the striding to be used. Stride is used to provide context to a model on the (left, right) of
an audio sample but without using that part to actually make the prediction. Setting this does not change
the length of the chunk.
format_for_conversion (`str`, defalts to `f32le`)
The name of the format of the audio samples to be returned by ffmpeg. The standard is `f32le`, `s16le`
could also be used.
Return:
A generator yielding dictionaries of the following form
`{"sampling_rate": int, "raw": np.array(), "partial" bool}` With optionnally a `"stride" (int, int)` key if
`stride_length_s` is defined.
`stride` and `raw` are all expressed in `samples`, and `partial` is a boolean saying if the current yield item
is a whole chunk, or a partial temporary result to be later replaced by another larger chunk.
"""
if stream_chunk_s is not None:
chunk_s = stream_chunk_s
else:
chunk_s = chunk_length_s
microphone = ffmpeg_microphone(sampling_rate, chunk_s, format_for_conversion=format_for_conversion)
if format_for_conversion == "s16le":
dtype = np.int16
size_of_sample = 2
elif format_for_conversion == "f32le":
dtype = np.float32
size_of_sample = 4
else:
raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`")
if stride_length_s is None:
stride_length_s = chunk_length_s / 6
chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample
if isinstance(stride_length_s, (int, float)):
stride_length_s = [stride_length_s, stride_length_s]
stride_left = int(round(sampling_rate * stride_length_s[0])) * size_of_sample
stride_right = int(round(sampling_rate * stride_length_s[1])) * size_of_sample
audio_time = datetime.datetime.now()
delta = datetime.timedelta(seconds=chunk_s)
for item in chunk_bytes_iter(microphone, chunk_len, stride=(stride_left, stride_right), stream=True):
# Put everything back in numpy scale
item["raw"] = np.frombuffer(item["raw"], dtype=dtype)
item["stride"] = (
item["stride"][0] // size_of_sample,
item["stride"][1] // size_of_sample,
)
item["sampling_rate"] = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def chunk_bytes_iter(iterator, chunk_len: int, stride: Tuple[int, int], stream: bool = False):
"""
Reads raw bytes from an iterator and does chunks of length `chunk_len`. Optionally adds `stride` to each chunks to
get overlaps. `stream` is used to return partial results even if a full `chunk_len` is not yet available.
"""
acc = b""
stride_left, stride_right = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}"
)
_stride_left = 0
for raw in iterator:
acc += raw
if stream and len(acc) < chunk_len:
stride = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(acc) >= chunk_len:
# We are flushing the accumulator
stride = (_stride_left, stride_right)
item = {"raw": acc[:chunk_len], "stride": stride}
if stream:
item["partial"] = False
yield item
_stride_left = stride_left
acc = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(acc) > stride_left:
item = {"raw": acc, "stride": (_stride_left, 0)}
if stream:
item["partial"] = False
yield item
def _ffmpeg_stream(ffmpeg_command, buflen: int):
"""
Internal function to create the generator of data through ffmpeg
"""
bufsize = 2**24 # 16Mo
try:
with subprocess.Popen(ffmpeg_command, stdout=subprocess.PIPE, bufsize=bufsize) as ffmpeg_process:
while True:
raw = ffmpeg_process.stdout.read(buflen)
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to stream audio files from filename") from error