Spaces:
Sleeping
Sleeping
Test Table
Browse files- app.py +45 -7
- milestone3/milestone3.py +16 -73
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,14 +1,20 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
|
|
|
|
|
|
|
|
|
4 |
# Define analyze function
|
5 |
-
def analyze(model_name: str, text: str) -> dict:
|
6 |
'''
|
7 |
Output result of sentiment analysis of a text through a defined model
|
8 |
'''
|
9 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
-
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
12 |
return classifier(text)
|
13 |
|
14 |
# App title
|
@@ -18,7 +24,7 @@ st.write("Currently it uses pre-trained models without fine-tuning.")
|
|
18 |
|
19 |
# Model hub
|
20 |
model_descrip = {
|
21 |
-
|
22 |
Labels: toxic, severe_toxic, obscene, threat, insult, identity_hate",
|
23 |
"distilbert-base-uncased-finetuned-sst-2-english": "This model is a fine-tune checkpoint of DistilBERT-base-uncased, fine-tuned on SST-2. \
|
24 |
Labels: POSITIVE; NEGATIVE ",
|
@@ -28,6 +34,27 @@ model_descrip = {
|
|
28 |
Labels: POS; NEU; NEG"
|
29 |
}
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
32 |
user_model = st.selectbox("Please select a model:", model_descrip)
|
33 |
|
@@ -35,16 +62,27 @@ user_model = st.selectbox("Please select a model:", model_descrip)
|
|
35 |
st.write("### Model Description:")
|
36 |
st.write(model_descrip[user_model])
|
37 |
|
|
|
|
|
|
|
38 |
# Perform analysis and print result
|
39 |
if st.button("Analyze"):
|
40 |
if not user_input:
|
41 |
st.write("Please enter a text.")
|
42 |
else:
|
43 |
with st.spinner("Hang on.... Analyzing..."):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
else:
|
50 |
st.write("Go on! Try the app!")
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
5 |
|
6 |
+
|
7 |
+
fine_tuned_model = "andyqin18/test-finetuned"
|
8 |
+
sample_text_num = 10
|
9 |
+
|
10 |
# Define analyze function
|
11 |
+
def analyze(model_name: str, text: str, top_k=1) -> dict:
|
12 |
'''
|
13 |
Output result of sentiment analysis of a text through a defined model
|
14 |
'''
|
15 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, top_k=top_k)
|
18 |
return classifier(text)
|
19 |
|
20 |
# App title
|
|
|
24 |
|
25 |
# Model hub
|
26 |
model_descrip = {
|
27 |
+
fine_tuned_model: "This is a customized BERT-base finetuned model that detects multiple toxicity for a text. \
|
28 |
Labels: toxic, severe_toxic, obscene, threat, insult, identity_hate",
|
29 |
"distilbert-base-uncased-finetuned-sst-2-english": "This model is a fine-tune checkpoint of DistilBERT-base-uncased, fine-tuned on SST-2. \
|
30 |
Labels: POSITIVE; NEGATIVE ",
|
|
|
34 |
Labels: POS; NEU; NEG"
|
35 |
}
|
36 |
|
37 |
+
df = pd.read_csv("/milestone3/comp/test_comment.csv")
|
38 |
+
test_texts = df["comment_text"].values
|
39 |
+
sample_texts = np.random.choice(test_texts, size=sample_text_num, replace=False)
|
40 |
+
|
41 |
+
init_table_dict = {
|
42 |
+
"Text": [],
|
43 |
+
"Highest Toxicity Class": [],
|
44 |
+
"Highest Score": [],
|
45 |
+
"Second Highest Toxicity Class": [],
|
46 |
+
"Second Highest Score": []
|
47 |
+
}
|
48 |
+
|
49 |
+
for text in sample_texts:
|
50 |
+
result = analyze(fine_tuned_model, text, top_k=2)
|
51 |
+
init_table_dict["Text"].append(text[:50])
|
52 |
+
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label'])
|
53 |
+
init_table_dict["Highest Score"].append(result[0][0]['score'])
|
54 |
+
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label'])
|
55 |
+
init_table_dict["Second Highest Score"].append(result[0][1]['score'])
|
56 |
+
|
57 |
+
|
58 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
59 |
user_model = st.selectbox("Please select a model:", model_descrip)
|
60 |
|
|
|
62 |
st.write("### Model Description:")
|
63 |
st.write(model_descrip[user_model])
|
64 |
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
# Perform analysis and print result
|
69 |
if st.button("Analyze"):
|
70 |
if not user_input:
|
71 |
st.write("Please enter a text.")
|
72 |
else:
|
73 |
with st.spinner("Hang on.... Analyzing..."):
|
74 |
+
if user_model == fine_tuned_model:
|
75 |
+
result = analyze(user_model, user_input, top_k=2)
|
76 |
+
|
77 |
+
|
78 |
+
df = pd.DataFrame(init_table_dict)
|
79 |
+
st.dataframe(df)
|
80 |
+
|
81 |
+
else:
|
82 |
+
result = analyze(user_model, user_input)
|
83 |
+
st.write("Result:")
|
84 |
+
st.write(f"Label: **{result[0]['label']}**")
|
85 |
+
st.write(f"Confidence Score: **{result[0]['score']}**")
|
86 |
|
87 |
else:
|
88 |
st.write("Go on! Try the app!")
|
milestone3/milestone3.py
CHANGED
@@ -1,82 +1,25 @@
|
|
1 |
# from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
2 |
|
3 |
-
#
|
4 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# model_name = "andyqin18/test-finetuned"
|
7 |
|
8 |
-
#
|
9 |
-
#
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
#
|
14 |
-
# "Hope you don't hate it"])
|
15 |
|
16 |
-
# for result in res:
|
17 |
-
# print(result)
|
18 |
import pandas as pd
|
19 |
-
from sklearn.model_selection import train_test_split
|
20 |
-
import torch
|
21 |
-
from torch.utils.data import Dataset
|
22 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
23 |
-
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
24 |
import numpy as np
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
train_labels = df[df.columns[2:]].values
|
30 |
-
# print(train_labels[0])
|
31 |
-
|
32 |
-
# np.random.seed(123)
|
33 |
-
# small_train_texts = np.random.choice(train_texts, size=1000, replace=False)
|
34 |
-
# small_train_labels_idx = np.random.choice(train_labels.shape[0], size=1000, replace=False)
|
35 |
-
# small_train_labels = train_labels[small_train_labels_idx, :]
|
36 |
-
|
37 |
-
|
38 |
-
# train_texts, val_texts, train_labels, val_labels = train_test_split(small_train_texts, small_train_labels, test_size=.2)
|
39 |
-
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)
|
40 |
-
|
41 |
-
class TextDataset(Dataset):
|
42 |
-
def __init__(self,texts,labels):
|
43 |
-
self.texts = texts
|
44 |
-
self.labels = labels
|
45 |
-
|
46 |
-
def __getitem__(self,idx):
|
47 |
-
encodings = tokenizer(self.texts[idx], truncation=True, padding="max_length")
|
48 |
-
item = {key: torch.tensor(val) for key, val in encodings.items()}
|
49 |
-
item['labels'] = torch.tensor(self.labels[idx],dtype=torch.float32)
|
50 |
-
del encodings
|
51 |
-
return item
|
52 |
-
|
53 |
-
def __len__(self):
|
54 |
-
return len(self.labels)
|
55 |
-
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
57 |
-
train_dataset = TextDataset(train_texts,train_labels)
|
58 |
-
val_dataset = TextDataset(val_texts, val_labels)
|
59 |
-
# small_train_dataset = train_dataset.shuffle(seed=42).select(range(1000))
|
60 |
-
# small_val_dataset = val_dataset.shuffle(seed=42).select(range(1000))
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=6, problem_type="multi_label_classification")
|
65 |
-
model.to(device)
|
66 |
-
training_args = TrainingArguments(
|
67 |
-
output_dir="finetuned-bert-uncased",
|
68 |
-
per_device_train_batch_size=16,
|
69 |
-
per_device_eval_batch_size=64,
|
70 |
-
learning_rate=5e-4,
|
71 |
-
weight_decay=0.01,
|
72 |
-
evaluation_strategy="epoch",
|
73 |
-
push_to_hub=True)
|
74 |
-
|
75 |
-
trainer = Trainer(
|
76 |
-
model=model,
|
77 |
-
args=training_args,
|
78 |
-
train_dataset=train_dataset,
|
79 |
-
eval_dataset=val_dataset,
|
80 |
-
)
|
81 |
-
|
82 |
-
trainer.train()
|
|
|
1 |
# from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
2 |
|
3 |
+
# def analyze(model_name: str, text: str, top_k=1) -> dict:
|
4 |
+
# '''
|
5 |
+
# Output result of sentiment analysis of a text through a defined model
|
6 |
+
# '''
|
7 |
+
# model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
# classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, top_k=top_k)
|
10 |
+
# return classifier(text)
|
11 |
|
|
|
12 |
|
13 |
+
# user_input = "Go fuck yourself"
|
14 |
+
# user_model = "andyqin18/test-finetuned"
|
15 |
|
16 |
+
# result = analyze(user_model, user_input, top_k=4)
|
17 |
|
18 |
+
# print(result[0][0]['label'])
|
|
|
19 |
|
|
|
|
|
20 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
21 |
import numpy as np
|
22 |
+
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
23 |
+
test_texts = df["comment_text"].values
|
24 |
+
sample_texts = np.random.choice(test_texts, size=10, replace=False)
|
25 |
+
print(sample_texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
transformers
|
2 |
-
torch
|
|
|
|
1 |
transformers
|
2 |
+
torch
|
3 |
+
pandas
|