Spaces:
Sleeping
Sleeping
# 1 Prepate dataset | |
# 2 Load pretrained Tokenizer, call it with dataset -> encoding | |
# 3 Build PyTorch Dataset with encodings | |
# 4 Load pretrained model | |
# 5 a) Load Trainer and train it | |
# b) or use native Pytorch training pipeline | |
from pathlib import Path | |
from sklearn.model_selection import train_test_split | |
import torch | |
from torch.utils.data import Dataset | |
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification | |
from transformers import Trainer, TrainingArguments | |
model_name = "distilbert-base-uncased" | |
def read_imdb_split(split_dir): # helper function to get text and label | |
split_dir = Path(split_dir) | |
texts = [] | |
labels = [] | |
for label_dir in ["pos", "neg"]: | |
thres = 0 | |
for text_file in (split_dir/label_dir).iterdir(): | |
if thres < 100: | |
f = open(text_file, encoding='utf8') | |
texts.append(f.read()) | |
labels.append(0 if label_dir == "neg" else 1) | |
thres += 1 | |
return texts, labels | |
train_texts, train_labels = read_imdb_split("aclImdb/train") | |
test_texts, test_labels = read_imdb_split("aclImdb/test") | |
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2) | |
class IMDBDataset(Dataset): | |
def __init__(self, encodings, labels): | |
self.encodings = encodings | |
self.labels = labels | |
def __getitem__(self, idx): | |
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} | |
item["labels"] = torch.tensor(self.labels[idx]) | |
return item | |
def __len__(self): | |
return len(self.labels) | |
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name) | |
train_encodings = tokenizer(train_texts, truncation=True, padding=True) | |
val_encodings = tokenizer(val_texts, truncation=True, padding=True) | |
test_encodings = tokenizer(test_texts, truncation=True, padding=True) | |
train_dataset = IMDBDataset(train_encodings, train_labels) | |
val_dataset = IMDBDataset(val_encodings, val_labels) | |
test_dataset = IMDBDataset(test_encodings, test_labels) | |
training_args = TrainingArguments( | |
output_dir='./results', | |
num_train_epochs=2, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=64, | |
warmup_steps=500, | |
learning_rate=5e-5, | |
weight_decay=0.01, | |
logging_dir='./logs', | |
logging_steps=10 | |
) | |
model = DistilBertForSequenceClassification.from_pretrained(model_name) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=val_dataset | |
) | |
trainer.train() | |