Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
# Define global variables | |
FINE_TUNED_MODEL = "andyqin18/finetuned-bert-uncased" | |
NUM_SAMPLE_TEXT = 10 | |
# Define analyze function | |
def analyze(model_name: str, text: str, top_k=1) -> dict: | |
''' | |
Output result of sentiment analysis of a text through a defined model | |
''' | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, top_k=top_k) | |
return classifier(text) | |
# App title | |
st.title("Toxic Tweet Detection and Sentiment Analysis App") | |
st.write("This app is to analyze the sentiments behind a text.") | |
st.write("You can choose to use my fine-tuned model or pre-trained models.") | |
# Model hub | |
model_descrip = { | |
FINE_TUNED_MODEL: "This is a customized BERT-base finetuned model that detects multiple toxicity for a text. \ | |
Labels: toxic, severe_toxic, obscene, threat, insult, identity_hate", | |
"distilbert-base-uncased-finetuned-sst-2-english": "This model is a fine-tune checkpoint of DistilBERT-base-uncased, fine-tuned on SST-2. \ | |
Labels: POSITIVE; NEGATIVE ", | |
"cardiffnlp/twitter-roberta-base-sentiment": "This is a roBERTa-base model trained on ~58M tweets and finetuned for sentiment analysis with the TweetEval benchmark. \ | |
Labels: 0 -> Negative; 1 -> Neutral; 2 -> Positive", | |
"finiteautomata/bertweet-base-sentiment-analysis": "Model trained with SemEval 2017 corpus (around ~40k tweets). Base model is BERTweet, a RoBERTa model trained on English tweets. \ | |
Labels: POS; NEU; NEG" | |
} | |
user_input = st.text_input("Enter your text:", value="I hate NLP. Always lacking GPU.") | |
user_model = st.selectbox("Please select a model:", model_descrip) | |
# Display model information | |
st.write("### Model Description:") | |
st.write(model_descrip[user_model]) | |
# Perform analysis and print result | |
if st.button("Analyze"): | |
if not user_input: | |
st.write("Please enter a text.") | |
else: | |
with st.spinner("Hang on.... Analyzing..."): | |
# If fine-tuned | |
if user_model == FINE_TUNED_MODEL: | |
result = analyze(user_model, user_input, top_k=2) # Top 2 labels with highest score | |
result_dict = { | |
"Text": [user_input], | |
"Highest Toxicity Class": [result[0][0]['label']], | |
"Highest Score": [result[0][0]['score']], | |
"Second Highest Toxicity Class": [result[0][1]['label']], | |
"Second Highest Score": [result[0][1]['score']] | |
} | |
st.dataframe(pd.DataFrame(result_dict)) | |
# 10 Sample Table | |
st.write("Here are 10 more examples.") | |
sample_texts = [ | |
"Please stop. If you continue to vandalize Wikipedia, as you did to Homosexuality, you will be blocked from editing.", | |
"knock it off you bloody CWI trot", | |
"No, he is an arrogant, self serving, immature idiot. Get it right.", | |
"to fuck you and ur family", | |
"Search Google, it's listed as 1966 everywhere I've seen, including many PJ related sites.", | |
"That entry made a lot of sense to me. ", | |
"KSchwartz is an annoying person who often smells of rotten fish and burnt animal hair.", | |
"Cool!", | |
"u suck u suck u suck u suck u sucku suck u suck u suck u suck u u suck", | |
"go fuck yourself ...cunt" | |
] | |
init_table_dict = { | |
"Text": [], | |
"Highest Toxicity Class": [], | |
"Highest Score": [], | |
"Second Highest Toxicity Class": [], | |
"Second Highest Score": [] | |
} | |
for text in sample_texts: | |
result = analyze(FINE_TUNED_MODEL, text[:50], top_k=2) | |
init_table_dict["Text"].append(text[:50]) | |
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label']) | |
init_table_dict["Highest Score"].append(result[0][0]['score']) | |
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label']) | |
init_table_dict["Second Highest Score"].append(result[0][1]['score']) | |
st.dataframe(pd.DataFrame(init_table_dict)) | |
st.write("( ─ ‿ ‿ ─ )") | |
else: | |
result = analyze(user_model, user_input) | |
st.write("Result:") | |
st.write(f"Label: **{result[0]['label']}**") | |
st.write(f"Confidence Score: **{result[0]['score']}**") | |
else: | |
st.write("Go on! Try the app!") |