|
import os |
|
import gc |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import json |
|
import spaces |
|
import config |
|
import utils |
|
import logging |
|
from PIL import Image, PngImagePlugin |
|
from datetime import datetime |
|
from diffusers.models import AutoencoderKL |
|
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
DESCRIPTION = "Juggernaut XL" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>" |
|
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" |
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" |
|
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" |
|
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs") |
|
|
|
MODEL = os.getenv( |
|
"MODEL", |
|
"https://huggingface.co/RunDiffusion/Juggernaut-XL-v9/blob/main/Juggernaut-XL_v9_RunDiffusionPhoto_v2.safetensors", |
|
) |
|
|
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def load_pipeline(model_name): |
|
vae = AutoencoderKL.from_pretrained( |
|
"madebyollin/sdxl-vae-fp16-fix", |
|
torch_dtype=torch.float16, |
|
) |
|
pipeline = ( |
|
StableDiffusionXLPipeline.from_single_file |
|
if MODEL.endswith(".safetensors") |
|
else StableDiffusionXLPipeline.from_pretrained |
|
) |
|
|
|
pipe = pipeline( |
|
model_name, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
custom_pipeline="lpw_stable_diffusion_xl", |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
use_auth_token=HF_TOKEN, |
|
variant="fp16", |
|
) |
|
|
|
pipe.to(device) |
|
return pipe |
|
|
|
|
|
@spaces.GPU |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
seed: int = 0, |
|
custom_width: int = 1024, |
|
custom_height: int = 1024, |
|
guidance_scale: float = 7.0, |
|
num_inference_steps: int = 30, |
|
sampler: str = "DPM++ 2M SDE Karras", |
|
aspect_ratio_selector: str = "1024 x 1024", |
|
use_upscaler: bool = False, |
|
upscaler_strength: float = 0.55, |
|
upscale_by: float = 1.5, |
|
progress=gr.Progress(track_tqdm=True), |
|
) -> Image: |
|
generator = utils.seed_everything(seed) |
|
|
|
width, height = utils.aspect_ratio_handler( |
|
aspect_ratio_selector, |
|
custom_width, |
|
custom_height, |
|
) |
|
|
|
width, height = utils.preprocess_image_dimensions(width, height) |
|
|
|
backup_scheduler = pipe.scheduler |
|
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler) |
|
|
|
if use_upscaler: |
|
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components) |
|
metadata = { |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"resolution": f"{width} x {height}", |
|
"guidance_scale": guidance_scale, |
|
"num_inference_steps": num_inference_steps, |
|
"seed": seed, |
|
"sampler": sampler, |
|
} |
|
|
|
if use_upscaler: |
|
new_width = int(width * upscale_by) |
|
new_height = int(height * upscale_by) |
|
metadata["use_upscaler"] = { |
|
"upscale_method": "nearest-exact", |
|
"upscaler_strength": upscaler_strength, |
|
"upscale_by": upscale_by, |
|
"new_resolution": f"{new_width} x {new_height}", |
|
} |
|
else: |
|
metadata["use_upscaler"] = None |
|
logger.info(json.dumps(metadata, indent=4)) |
|
|
|
try: |
|
if use_upscaler: |
|
latents = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
output_type="latent", |
|
).images |
|
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by) |
|
images = upscaler_pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=upscaled_latents, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
strength=upscaler_strength, |
|
generator=generator, |
|
output_type="pil", |
|
).images |
|
else: |
|
images = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
output_type="pil", |
|
).images |
|
|
|
if images and IS_COLAB: |
|
for image in images: |
|
filepath = utils.save_image(image, metadata, OUTPUT_DIR) |
|
logger.info(f"Image saved as {filepath} with metadata") |
|
|
|
return images, metadata |
|
except Exception as e: |
|
logger.exception(f"An error occurred: {e}") |
|
raise |
|
finally: |
|
if use_upscaler: |
|
del upscaler_pipe |
|
pipe.scheduler = backup_scheduler |
|
utils.free_memory() |
|
|
|
|
|
if torch.cuda.is_available(): |
|
pipe = load_pipeline(MODEL) |
|
logger.info("Loaded on Device!") |
|
else: |
|
pipe = None |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
title = gr.HTML( |
|
f"""<h1><span>{DESCRIPTION}</span></h1>""", |
|
elem_id="title", |
|
) |
|
gr.Markdown( |
|
f"""Gradio demo for [Juggernaut XL](https://huggingface.co/RunDiffusion/Juggernaut-XL-v9)""", |
|
elem_id="subtitle", |
|
) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=5, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button( |
|
"Generate", |
|
variant="primary", |
|
scale=0 |
|
) |
|
result = gr.Gallery( |
|
label="Result", |
|
columns=1, |
|
preview=True, |
|
show_label=False |
|
) |
|
with gr.Accordion(label="Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative Prompt", |
|
max_lines=5, |
|
placeholder="Enter a negative prompt", |
|
value="(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)" |
|
) |
|
aspect_ratio_selector = gr.Radio( |
|
label="Aspect Ratio", |
|
choices=config.aspect_ratios, |
|
value="1024 x 1024", |
|
container=True, |
|
) |
|
with gr.Group(visible=False) as custom_resolution: |
|
with gr.Row(): |
|
custom_width = gr.Slider( |
|
label="Width", |
|
minimum=MIN_IMAGE_SIZE, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=8, |
|
value=1024, |
|
) |
|
custom_height = gr.Slider( |
|
label="Height", |
|
minimum=MIN_IMAGE_SIZE, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=8, |
|
value=1024, |
|
) |
|
use_upscaler = gr.Checkbox(label="Use Upscaler", value=False) |
|
with gr.Row() as upscaler_row: |
|
upscaler_strength = gr.Slider( |
|
label="Strength", |
|
minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
value=0.55, |
|
visible=False, |
|
) |
|
upscale_by = gr.Slider( |
|
label="Upscale by", |
|
minimum=1, |
|
maximum=1.5, |
|
step=0.1, |
|
value=1.5, |
|
visible=False, |
|
) |
|
|
|
sampler = gr.Dropdown( |
|
label="Sampler", |
|
choices=config.sampler_list, |
|
interactive=True, |
|
value="DPM++ 2M SDE Karras", |
|
) |
|
with gr.Row(): |
|
seed = gr.Slider( |
|
label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0 |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Group(): |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=1, |
|
maximum=12, |
|
step=0.1, |
|
value=7.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
with gr.Accordion(label="Generation Parameters", open=False): |
|
gr_metadata = gr.JSON(label="Metadata", show_label=False) |
|
gr.Examples( |
|
examples=config.examples, |
|
inputs=prompt, |
|
outputs=[result, gr_metadata], |
|
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs), |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
use_upscaler.change( |
|
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)], |
|
inputs=use_upscaler, |
|
outputs=[upscaler_strength, upscale_by], |
|
queue=False, |
|
api_name=False, |
|
) |
|
aspect_ratio_selector.change( |
|
fn=lambda x: gr.update(visible=x == "Custom"), |
|
inputs=aspect_ratio_selector, |
|
outputs=custom_resolution, |
|
queue=False, |
|
api_name=False, |
|
) |
|
|
|
inputs = [ |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
custom_width, |
|
custom_height, |
|
guidance_scale, |
|
num_inference_steps, |
|
sampler, |
|
aspect_ratio_selector, |
|
use_upscaler, |
|
upscaler_strength, |
|
upscale_by, |
|
] |
|
|
|
prompt.submit( |
|
fn=utils.randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name="run", |
|
) |
|
negative_prompt.submit( |
|
fn=utils.randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
run_button.click( |
|
fn=utils.randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=inputs, |
|
outputs=[result, gr_metadata], |
|
api_name=False, |
|
) |
|
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB) |