Spaces:
Paused
Paused
Upload folder using huggingface_hub
Browse files- app.py +32 -0
- face_detection.py +11 -0
- heatmap.py +32 -0
- pose.py +80 -0
- yunet-ckpts/yunet_2023mar.onnx +3 -0
- yunet-ckpts/yunet_2023mar_int8.onnx +3 -0
- yunet.py +55 -0
- yunet2.py +114 -0
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from face_detection import detect_faces
|
3 |
+
from heatmap import get_heatmap
|
4 |
+
from pose import detect_pose, draw_pose
|
5 |
+
|
6 |
+
def prepare_image(img_path):
|
7 |
+
# detect face
|
8 |
+
annotated_image, face_bboxes = detect_faces(img_path)
|
9 |
+
# detect pose + bounding_box
|
10 |
+
pose_results = detect_pose(img_path)
|
11 |
+
pose_result = pose_results[0]
|
12 |
+
body_bboxes, body_keypoints = pose_result.boxes, pose_result.keypoints
|
13 |
+
# generate heatmap
|
14 |
+
heatmap = get_heatmap(img_path)
|
15 |
+
heatmap_pil = Image.fromarray(heatmap)
|
16 |
+
# pose on heatmap
|
17 |
+
heatmap_n_pose = draw_pose(heatmap_pil,body_keypoints) #PIL.Image
|
18 |
+
|
19 |
+
# area in bounding_box below head (rectangular)
|
20 |
+
face_y1, face_w = face_bboxes[0][1] #xywh
|
21 |
+
face_center_y = (face_w - face_y1) // 2
|
22 |
+
body_box = body_bboxes.numpy().xywh[0]
|
23 |
+
body_box[1] = face_center_y
|
24 |
+
|
25 |
+
# Calculate the coordinates for cropping
|
26 |
+
x, y, w, h = map(int, body_box)
|
27 |
+
cropped_region = heatmap_n_pose.crop((x, y, x + w, y + h))
|
28 |
+
original_image = Image.open(img_path)
|
29 |
+
original_image.paste(cropped_region, (x, y))
|
30 |
+
|
31 |
+
# Return the modified image
|
32 |
+
return original_image
|
face_detection.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YuNet-face-detection
|
2 |
+
import cv2
|
3 |
+
from yunet2 import YuNet2
|
4 |
+
|
5 |
+
MODEL_PATH = "./yunet-ckpts/yunet_2023mar.onnx"
|
6 |
+
yunet_model = YuNet2(modelPath=MODEL_PATH)
|
7 |
+
|
8 |
+
def detect_faces(src_img):
|
9 |
+
cv2_img = cv2.imread(src_img)
|
10 |
+
annotated_image, bboxes = yunet_model.detect(cv2_img)
|
11 |
+
return annotated_image, bboxes
|
heatmap.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# intel-isl/MiDaS
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed)
|
7 |
+
# model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed)
|
8 |
+
# model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed)
|
9 |
+
|
10 |
+
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
11 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
12 |
+
|
13 |
+
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
|
14 |
+
transform = midas_transforms.dpt_transform
|
15 |
+
else:
|
16 |
+
transform = midas_transforms.small_transform
|
17 |
+
|
18 |
+
def get_heatmap(src_img):
|
19 |
+
cv2image = cv2.imread(src_img)
|
20 |
+
img = cv2.cvtColor(cv2image, cv2.COLOR_BGR2RGB)
|
21 |
+
input_batch = transform(img)
|
22 |
+
with torch.inference_mode():
|
23 |
+
prediction = midas(input_batch)
|
24 |
+
|
25 |
+
prediction = F.interpolate(
|
26 |
+
prediction.unsqueeze(1),
|
27 |
+
size=img.shape[:2],
|
28 |
+
mode="bicubic",
|
29 |
+
align_corners=False,
|
30 |
+
).squeeze()
|
31 |
+
output = prediction.cpu().numpy()
|
32 |
+
return output
|
pose.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLO
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from ultralytics import YOLO
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
|
8 |
+
model_name = 'yolo11s-pose.pt'
|
9 |
+
model = YOLO(model_name)
|
10 |
+
|
11 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
+
half = device=='cuda'
|
13 |
+
|
14 |
+
connection_color_map = {
|
15 |
+
(0, 1): 'lightgreen', # Nose to Left Eye
|
16 |
+
(0, 2): 'lightgreen', # Nose to Right Eye
|
17 |
+
(1, 3): 'lightgreen', # Left Eye to Left Ear
|
18 |
+
(2, 4): 'lightgreen', # Right Eye to Right Ear
|
19 |
+
(0, 5): 'lightblue', # Nose to Left Shoulder
|
20 |
+
(0, 6): 'lightblue', # Nose to Right Shoulder
|
21 |
+
(5, 7): 'blue', # Left Shoulder to Left Elbow
|
22 |
+
(7, 9): 'blue', # Left Elbow to Left Wrist
|
23 |
+
(6, 8): 'red', # Right Shoulder to Right Elbow
|
24 |
+
(8, 10): 'red', # Right Elbow to Right Wrist
|
25 |
+
(5, 11): 'purple', # Left Shoulder to Left Hip
|
26 |
+
(6, 12): 'purple', # Right Shoulder to Right Hip
|
27 |
+
(11, 13): 'purple', # Left Hip to Left Knee
|
28 |
+
(13, 15): 'purple', # Left Knee to Left Ankle
|
29 |
+
(12, 14): 'purple', # Right Hip to Right Knee
|
30 |
+
(14, 16): 'purple', # Right Knee to Right Ankle
|
31 |
+
(11, 12): 'orange' # Left Hip to Right Hip
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
def detect_pose(src_img):
|
36 |
+
results = model.predict(
|
37 |
+
source=src_img,
|
38 |
+
# conf=conf_threshold,
|
39 |
+
# iou=iou_threshold,
|
40 |
+
max_det=1,
|
41 |
+
show_labels=True,
|
42 |
+
show_conf=True,
|
43 |
+
imgsz=32*5,
|
44 |
+
classes=[0],
|
45 |
+
# line_width=3,
|
46 |
+
half=half,
|
47 |
+
device=device,
|
48 |
+
)
|
49 |
+
return results
|
50 |
+
|
51 |
+
def draw_pose(skeleton_image:Image.Image, keypoints, threshold=0.7, line_width = 3,circle_radius = 6):
|
52 |
+
coords = keypoints.numpy().xy[0]
|
53 |
+
scores = keypoints.data.squeeze()[:,2].numpy()
|
54 |
+
# Create a blank image with the same size as the input image
|
55 |
+
# skeleton_image = Image.new("RGB", im.size, "black") # White background
|
56 |
+
draw = ImageDraw.Draw(skeleton_image)
|
57 |
+
|
58 |
+
# Draw lines connecting the keypoints
|
59 |
+
for connection, color in connection_color_map.items():
|
60 |
+
try:
|
61 |
+
start_point = coords[connection[0]]
|
62 |
+
end_point = coords[connection[1]]
|
63 |
+
if scores[connection[0]] > threshold and scores[connection[1]] > threshold:
|
64 |
+
draw.line([tuple(start_point), tuple(end_point)], fill=color, width=line_width)
|
65 |
+
draw.ellipse(
|
66 |
+
(start_point[0] - circle_radius, start_point[1] - circle_radius,
|
67 |
+
start_point[0] + circle_radius, start_point[1] + circle_radius),
|
68 |
+
fill=color
|
69 |
+
)
|
70 |
+
draw.ellipse(
|
71 |
+
(end_point[0] - circle_radius, end_point[1] - circle_radius,
|
72 |
+
end_point[0] + circle_radius, end_point[1] + circle_radius),
|
73 |
+
fill=color
|
74 |
+
)
|
75 |
+
|
76 |
+
except IndexError:
|
77 |
+
pass # Handle cases where keypoints might be missing
|
78 |
+
|
79 |
+
# Save the skeleton image
|
80 |
+
return skeleton_image
|
yunet-ckpts/yunet_2023mar.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f2383e4dd3cfbb4553ea8718107fc0423210dc964f9f4280604804ed2552fa4
|
3 |
+
size 232589
|
yunet-ckpts/yunet_2023mar_int8.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:321aa5a6afabf7ecc46a3d06bfab2b579dc96eb5c3be7edd365fa04502ad9294
|
3 |
+
size 100416
|
yunet.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
from itertools import product
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import cv2 as cv
|
11 |
+
|
12 |
+
class YuNet:
|
13 |
+
def __init__(self, modelPath, inputSize=[320, 320], confThreshold=0.6, nmsThreshold=0.3, topK=5000, backendId=0, targetId=0):
|
14 |
+
self._modelPath = modelPath
|
15 |
+
self._inputSize = tuple(inputSize) # [w, h]
|
16 |
+
self._confThreshold = confThreshold
|
17 |
+
self._nmsThreshold = nmsThreshold
|
18 |
+
self._topK = topK
|
19 |
+
self._backendId = backendId
|
20 |
+
self._targetId = targetId
|
21 |
+
|
22 |
+
self._model = cv.FaceDetectorYN.create(
|
23 |
+
model=self._modelPath,
|
24 |
+
config="",
|
25 |
+
input_size=self._inputSize,
|
26 |
+
score_threshold=self._confThreshold,
|
27 |
+
nms_threshold=self._nmsThreshold,
|
28 |
+
top_k=self._topK,
|
29 |
+
backend_id=self._backendId,
|
30 |
+
target_id=self._targetId)
|
31 |
+
|
32 |
+
@property
|
33 |
+
def name(self):
|
34 |
+
return self.__class__.__name__
|
35 |
+
|
36 |
+
def setBackendAndTarget(self, backendId, targetId):
|
37 |
+
self._backendId = backendId
|
38 |
+
self._targetId = targetId
|
39 |
+
self._model = cv.FaceDetectorYN.create(
|
40 |
+
model=self._modelPath,
|
41 |
+
config="",
|
42 |
+
input_size=self._inputSize,
|
43 |
+
score_threshold=self._confThreshold,
|
44 |
+
nms_threshold=self._nmsThreshold,
|
45 |
+
top_k=self._topK,
|
46 |
+
backend_id=self._backendId,
|
47 |
+
target_id=self._targetId)
|
48 |
+
|
49 |
+
def setInputSize(self, input_size):
|
50 |
+
self._model.setInputSize(tuple(input_size))
|
51 |
+
|
52 |
+
def infer(self, image):
|
53 |
+
# Forward
|
54 |
+
faces = self._model.detect(image)
|
55 |
+
return np.array([]) if faces[1] is None else faces[1]
|
yunet2.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import cv2 as cv
|
3 |
+
import numpy as np
|
4 |
+
from yunet import YuNet
|
5 |
+
|
6 |
+
|
7 |
+
# Valid combinations of backends and targets
|
8 |
+
backend_target_pairs = [
|
9 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
10 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
11 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
12 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
13 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU],
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
class YuNet2:
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
modelPath,
|
21 |
+
input_size=(320, 320),
|
22 |
+
conf_threshold=0.6,
|
23 |
+
nms_threshold=0.3,
|
24 |
+
top_k=5000,
|
25 |
+
backend_id=0,
|
26 |
+
target_id=0,
|
27 |
+
):
|
28 |
+
self.model = YuNet(
|
29 |
+
modelPath=modelPath,
|
30 |
+
inputSize=input_size,
|
31 |
+
confThreshold=conf_threshold,
|
32 |
+
nmsThreshold=nms_threshold,
|
33 |
+
topK=top_k,
|
34 |
+
backendId=backend_id,
|
35 |
+
targetId=target_id,
|
36 |
+
)
|
37 |
+
|
38 |
+
def detect(self, image, num_faces=None):
|
39 |
+
# If input is an image
|
40 |
+
if image is not None:
|
41 |
+
h, w, _ = image.shape
|
42 |
+
|
43 |
+
# Inference
|
44 |
+
self.model.setInputSize([w, h])
|
45 |
+
results = self.model.infer(image)
|
46 |
+
|
47 |
+
faces = results[:num_faces] if num_faces else results
|
48 |
+
|
49 |
+
bboxes = []
|
50 |
+
|
51 |
+
for face in faces:
|
52 |
+
bbox = face[0:4].astype(np.int32) # x,y,w,h
|
53 |
+
bboxes.append(bbox)
|
54 |
+
x, y, w, h = bbox
|
55 |
+
# draw
|
56 |
+
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
57 |
+
|
58 |
+
return image, bboxes
|
59 |
+
|
60 |
+
def resize(self, image, target_size=512, above_head_ratio=0.5):
|
61 |
+
height, width, _c = image.shape
|
62 |
+
ar = width / height
|
63 |
+
# downscale the image
|
64 |
+
if not target_size:
|
65 |
+
target_size = 512
|
66 |
+
if ar > 1:
|
67 |
+
# Landscape
|
68 |
+
new_height = target_size
|
69 |
+
new_width = int(target_size * ar)
|
70 |
+
elif ar < 1:
|
71 |
+
# Portrait
|
72 |
+
new_width = target_size
|
73 |
+
new_height = int(target_size / ar)
|
74 |
+
else:
|
75 |
+
# Square
|
76 |
+
new_width = target_size
|
77 |
+
new_height = target_size
|
78 |
+
|
79 |
+
resized = cv2.resize(
|
80 |
+
image, (new_width, new_height), interpolation=cv2.INTER_AREA
|
81 |
+
)
|
82 |
+
|
83 |
+
# Perform object detection on the resized image
|
84 |
+
dt_image, bboxes = self.detect(resized.copy())
|
85 |
+
|
86 |
+
# crop around face
|
87 |
+
if len(bboxes) >= 1:
|
88 |
+
x, y, w, h = bboxes[0]
|
89 |
+
else:
|
90 |
+
x, y, w, h = 0, 0, target_size, target_size
|
91 |
+
# 20% of image height
|
92 |
+
above_head_max = int(target_size * above_head_ratio)
|
93 |
+
x_center = int((x + (x + w)) / 2)
|
94 |
+
y_center = int((y + (y + h)) / 2)
|
95 |
+
# Calculate cropping box
|
96 |
+
top = int(max(0, y_center - above_head_max))
|
97 |
+
bottom = int(min(top + target_size, resized.shape[0]))
|
98 |
+
|
99 |
+
left = int(max(0, x_center - target_size // 2))
|
100 |
+
right = int(min(x_center + target_size // 2, resized.shape[1]))
|
101 |
+
|
102 |
+
# adjust width if necessory
|
103 |
+
_w = right - left
|
104 |
+
if _w != target_size:
|
105 |
+
dx = (
|
106 |
+
target_size - _w
|
107 |
+
) # difference between the target size and the current width
|
108 |
+
nl = max(0, left - dx)
|
109 |
+
dr = dx - nl # remaining adjustment needed for the right coordinate
|
110 |
+
left = nl
|
111 |
+
right += dr
|
112 |
+
|
113 |
+
cropped_image = resized[top:bottom, left:right]
|
114 |
+
return dt_image, cropped_image
|