Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from app.service.vocal_remover import layers | |
class BaseNet(nn.Module): | |
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))): | |
super(BaseNet, self).__init__() | |
self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1) | |
self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1) | |
self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1) | |
self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1) | |
self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1) | |
self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True) | |
self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1) | |
self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1) | |
self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1) | |
self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm) | |
self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1) | |
def __call__(self, x): | |
e1 = self.enc1(x) | |
e2 = self.enc2(e1) | |
e3 = self.enc3(e2) | |
e4 = self.enc4(e3) | |
e5 = self.enc5(e4) | |
h = self.aspp(e5) | |
h = self.dec4(h, e4) | |
h = self.dec3(h, e3) | |
h = self.dec2(h, e2) | |
h = torch.cat([h, self.lstm_dec2(h)], dim=1) | |
h = self.dec1(h, e1) | |
return h | |
class CascadedNet(nn.Module): | |
def __init__(self, n_fft, nout=32, nout_lstm=128): | |
super(CascadedNet, self).__init__() | |
self.max_bin = n_fft // 2 | |
self.output_bin = n_fft // 2 + 1 | |
self.nin_lstm = self.max_bin // 2 | |
self.offset = 64 | |
self.stg1_low_band_net = nn.Sequential( | |
BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm), | |
layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0), | |
) | |
self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2) | |
self.stg2_low_band_net = nn.Sequential( | |
BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm), | |
layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0), | |
) | |
self.stg2_high_band_net = BaseNet( | |
nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2 | |
) | |
self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm) | |
self.out = nn.Conv2d(nout, 2, 1, bias=False) | |
self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False) | |
def forward(self, x): | |
x = x[:, :, : self.max_bin] | |
bandw = x.size()[2] // 2 | |
l1_in = x[:, :, :bandw] | |
h1_in = x[:, :, bandw:] | |
l1 = self.stg1_low_band_net(l1_in) | |
h1 = self.stg1_high_band_net(h1_in) | |
aux1 = torch.cat([l1, h1], dim=2) | |
l2_in = torch.cat([l1_in, l1], dim=1) | |
h2_in = torch.cat([h1_in, h1], dim=1) | |
l2 = self.stg2_low_band_net(l2_in) | |
h2 = self.stg2_high_band_net(h2_in) | |
aux2 = torch.cat([l2, h2], dim=2) | |
f3_in = torch.cat([x, aux1, aux2], dim=1) | |
f3 = self.stg3_full_band_net(f3_in) | |
mask = torch.sigmoid(self.out(f3)) | |
mask = F.pad( | |
input=mask, | |
pad=(0, 0, 0, self.output_bin - mask.size()[2]), | |
mode="replicate", | |
) | |
if self.training: | |
aux = torch.cat([aux1, aux2], dim=1) | |
aux = torch.sigmoid(self.aux_out(aux)) | |
aux = F.pad( | |
input=aux, | |
pad=(0, 0, 0, self.output_bin - aux.size()[2]), | |
mode="replicate", | |
) | |
return mask, aux | |
else: | |
return mask | |
def predict_mask(self, x): | |
mask = self.forward(x) | |
if self.offset > 0: | |
mask = mask[:, :, :, self.offset : -self.offset] | |
assert mask.size()[3] > 0 | |
return mask | |
def predict(self, x): | |
mask = self.forward(x) | |
pred_mag = x * mask | |
if self.offset > 0: | |
pred_mag = pred_mag[:, :, :, self.offset : -self.offset] | |
assert pred_mag.size()[3] > 0 | |
return pred_mag | |