Spaces:
Sleeping
Sleeping
import os | |
from pathlib import Path | |
from typing import List | |
from loguru import logger as log | |
import requests | |
import streamlit as st | |
from footer import footer | |
from header import header | |
from helpers import ( | |
load_audio_segment, | |
load_list_of_songs, | |
plot_audio, | |
st_local_audio, | |
url_is_valid, | |
file_size_is_valid, | |
delete_old_files, | |
) | |
from service.demucs_runner import separator | |
from service.vocal_remover.runner import load_model, separate | |
from streamlit_option_menu import option_menu | |
label_sources = { | |
"no_vocals.mp3": "๐ถ Instrumental", | |
"vocals.mp3": "๐ค Vocals", | |
"drums.mp3": "๐ฅ Drums", | |
"bass.mp3": "๐ธ Bass", | |
"guitar.mp3": "๐ธ Guitar", | |
"piano.mp3": "๐น Piano", | |
"other.mp3": "๐ถ Other", | |
} | |
separation_mode_to_model = { | |
"Vocals & Instrumental (Faster)": ("vocal_remover", ["vocals.mp3", "no_vocals.mp3"]), | |
"Vocals & Instrumental (High Quality, Slower)": ("htdemucs", ["vocals.mp3", "no_vocals.mp3"]), | |
"Vocals, Drums, Bass & Other (Slower)": ( | |
"htdemucs", | |
["vocals.mp3", "drums.mp3", "bass.mp3", "other.mp3"], | |
), | |
"Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)": ( | |
"htdemucs_6s", | |
["vocals.mp3", "drums.mp3", "bass.mp3", "guitar.mp3", "piano.mp3", "other.mp3"], | |
), | |
} | |
extensions = ["mp3", "wav", "ogg", "flac"] | |
out_path = Path("/tmp") | |
in_path = Path("/tmp") | |
def get_sources(path, file_sources): | |
sources = {} | |
for file in file_sources: | |
fullpath = path / file | |
if fullpath.exists(): | |
sources[file] = fullpath | |
return sources | |
def reset_execution(): | |
st.session_state.executed = False | |
def show_results(model_name: str, dir_name_output: str, file_sources: List): | |
sources = get_sources(out_path / Path(model_name) / dir_name_output, file_sources) | |
tab_sources = st.tabs([f"**{label_sources.get(k)}**" for k in sources.keys()]) | |
for i, (file, pathname) in enumerate(sources.items()): | |
with tab_sources[i]: | |
cols = st.columns(2) | |
with cols[0]: | |
auseg = load_audio_segment(pathname, "mp3") | |
st.image( | |
plot_audio( | |
auseg, | |
32767, | |
file=file, | |
model_name=model_name, | |
dir_name_output=dir_name_output, | |
), | |
use_column_width="always", | |
) | |
with cols[1]: | |
st_local_audio(pathname, key=f"output_{file}_{dir_name_output}") | |
log.info(f"Displaying results for {dir_name_output} - {model_name}") | |
def body(): | |
filename = None | |
name_song = None | |
st.markdown( | |
"""<style> | |
div[data-baseweb="tab-list"] { | |
display: flex !important; | |
align-items: center !important; | |
justify-content: space-evenly !important; | |
flex-wrap: wrap !important; | |
.css-q8sbsg.e16nr0p34 p{ | |
font-size: 1.1rem !important; | |
} | |
} | |
</style>""", | |
unsafe_allow_html=True, | |
) | |
cols = st.columns([1, 6, 1, 4, 1]) | |
with cols[1]: | |
with st.columns([1, 8, 1])[1]: | |
option = option_menu( | |
menu_title=None, | |
options=["Upload File", "From URL", "Examples"], | |
icons=["cloud-upload-fill", "link-45deg", "music-note-list"], | |
orientation="horizontal", | |
styles={ | |
"container": { | |
"width": "100%", | |
"height": "3.5rem", | |
"margin": "0px", | |
"padding": "0px", | |
}, | |
"icon": {"font-size": "1rem"}, | |
"nav-link": { | |
"display": "flex", | |
"height": "3rem", | |
"justify-content": "center", | |
"align-items": "center", | |
"text-align": "center", | |
"flex-direction": "column", | |
"font-size": "1rem", | |
"padding-left": "0px", | |
"padding-right": "0px", | |
}, | |
}, | |
key="option_separate", | |
) | |
if option == "Upload File": | |
uploaded_file = st.file_uploader( | |
"Choose a file", | |
type=extensions, | |
key="file", | |
help="Supported formats: mp3, wav, ogg, flac.", | |
) | |
if uploaded_file is not None: | |
with st.spinner("Loading audio..."): | |
with open(in_path / uploaded_file.name, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
filename = uploaded_file.name | |
st.audio(uploaded_file) | |
elif option == "From URL": | |
url = st.text_input( | |
"Paste the URL of the audio file", | |
key="url_input", | |
help="Supported formats: mp3, wav, ogg, flac.", | |
) | |
if url != "" and url_is_valid(url): | |
with st.spinner("Downloading audio..."): | |
filename = url.split("/")[-1] | |
response = requests.get(url, stream=True) | |
if response.status_code == 200 and file_size_is_valid(response): | |
with open(in_path / filename, "wb") as audio_file: | |
for chunk in response.iter_content(chunk_size=1024): | |
if chunk: | |
audio_file.write(chunk) | |
st_local_audio(in_path / filename, key="input_from_url") | |
else: | |
st.error("Failed to download audio file.") | |
filename = None | |
elif option == "Examples": | |
samples_song = load_list_of_songs(path="separate_songs.json") | |
if samples_song is not None: | |
name_song = st.selectbox( | |
label="Select a song", | |
options=list(samples_song.keys()), | |
format_func=lambda x: x.replace("_", " "), | |
index=1, | |
key="select_example", | |
) | |
if (Path("/tmp") / name_song).exists(): | |
st_local_audio(Path("/tmp") / name_song, key=f"input_from_sample_{name_song}") | |
else: | |
name_song = None | |
with cols[3]: | |
separation_mode = st.selectbox( | |
"Choose the separation mode", | |
[ | |
"Vocals & Instrumental (Faster)", | |
"Vocals & Instrumental (High Quality, Slower)", | |
"Vocals, Drums, Bass & Other (Slower)", | |
"Vocal, Drums, Bass, Guitar, Piano & Other (Slowest)", | |
], | |
on_change=reset_execution(), | |
key="separation_mode", | |
) | |
if separation_mode == "Vocals & Instrumental (Faster)": | |
max_duration = 30 | |
else: | |
max_duration = 15 | |
model_name, file_sources = separation_mode_to_model[separation_mode] | |
if filename is not None: | |
song = load_audio_segment(in_path / filename, filename.split(".")[-1]) | |
n_secs = round(len(song) / 1000) | |
if os.environ.get("ENV_LIMITATION", False): | |
with cols[3]: | |
start_time = st.number_input( | |
"Choose the start time", | |
min_value=0, | |
max_value=n_secs, | |
step=1, | |
value=0, | |
help=f"Maximum duration is {max_duration} seconds for this separation mode. Duplicate this space to remove any limit.", | |
format="%d", | |
) | |
st.session_state.start_time = start_time | |
end_time = min(start_time + max_duration, n_secs) | |
song = song[start_time * 1000 : end_time * 1000] | |
st.info( | |
f"Audio source will be processed from {start_time} to {end_time} seconds. Duplicate this space to remove any limit.", | |
icon="โฑ", | |
) | |
else: | |
start_time = 0 | |
end_time = n_secs | |
with st.columns([2, 1, 2])[1]: | |
execute = st.button( | |
"Separate Music Sources ๐ถ", type="primary", use_container_width=True | |
) | |
if execute or st.session_state.executed: | |
if execute: | |
st.session_state.executed = False | |
if not st.session_state.executed: | |
log.info(f"{option} - Separating {filename} with {separation_mode}...") | |
song.export(in_path / filename, format=filename.split(".")[-1]) | |
with st.columns([1, 1, 1])[1]: | |
with st.spinner("Separating source audio, it will take a while..."): | |
if model_name == "vocal_remover": | |
model, device = load_model(pretrained_model="baseline.pth") | |
separate( | |
input=in_path / filename, | |
model=model, | |
device=device, | |
output_dir=out_path, | |
) | |
else: | |
stem = None | |
if separation_mode == "Vocals & Instrumental (High Quality, Slower)": | |
stem = "vocals" | |
separator( | |
tracks=[in_path / filename], | |
out=out_path, | |
model=model_name, | |
shifts=1, | |
overlap=0.5, | |
stem=stem, | |
int24=False, | |
float32=False, | |
clip_mode="rescale", | |
mp3=True, | |
mp3_bitrate=320, | |
verbose=True, | |
start_time=start_time, | |
end_time=end_time, | |
) | |
dir_name_output = ".".join(filename.split(".")[:-1]) | |
filename = None | |
st.session_state.executed = True | |
show_results(model_name, dir_name_output, file_sources) | |
elif name_song is not None and option == "Examples": | |
show_results(model_name, name_song, file_sources) | |
if __name__ == "__main__": | |
header() | |
body() | |
footer() | |
delete_old_files("/tmp", 60 * 30) | |