andrewsunanda's picture
Upload Model
40db5de
raw
history blame
4.68 kB
import streamlit as st
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
st.set_page_config(page_title='Internet Service Provider Customer Churn Dataset Analysis', layout='wide', initial_sidebar_state='expanded')
def run():
# Buat Title
st.title('EDA on Customer Churn')
# Buat Deskripsi
st.subheader('Written by Franciscus Andrew Sunanda, FTDS-RMT-018')
st.markdown('---')
st.write('Dataset : Internet Service Provider Customer Churn')
st.write('Objective : To create a model that can predict whether a customers will churn or not')
st.write('Evaluation Metrics will be using Recall Score to minimize the False Negatives predicted by the model')
st.markdown('---')
st.write('## Dataset')
data = pd.read_csv('churn.csv')
st.dataframe(data)
st.markdown('---')
st.write('## Checking Balance / Imbalance')
churn = data['churn_risk_score'].value_counts()
fig = plt.figure()
churn.plot(kind='pie',
figsize=(10, 8),
autopct='%1.1f%%', # untuk membuat persentase
labels=None,
)
plt.title('Churn/No Churn Numbers in this Dataset')
plt.axis('equal')
plt.legend(labels=['No Churn', 'Churn'])
st.pyplot(fig)
st.write('Looks like in this dataset, for classification is already quite balanced between the two possible outcomes')
st.markdown('---')
st.write('## Complaints')
complaint = data.groupby(['churn_risk_score', 'past_complaint']).size().reset_index(name='count')
fig = plt.figure(figsize=(10,8))
ax = sns.barplot(x='past_complaint', y='count', data=complaint, hue='churn_risk_score')
plt.title('Churn Risk based on Past Complaint')
for i in ax.containers:
ax.bar_label(i,)
handles, labels = ax.get_legend_handles_labels()
plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='upper right')
st.pyplot(fig)
status = data[data['past_complaint'] == 'Yes'].groupby(['churn_risk_score','complaint_status']).size().reset_index(name='count')
fig = plt.figure(figsize=(10,8))
ax = sns.barplot(x='complaint_status', y='count', data=status, hue='churn_risk_score')
plt.title('Churn Risk based on Complaint Status')
for i in ax.containers:
ax.bar_label(i,)
handles, labels = ax.get_legend_handles_labels()
plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='upper right')
st.pyplot(fig)
st.markdown('---')
st.write('## Feedback')
feedback = data.groupby(['churn_risk_score', 'feedback']).size().reset_index(name='count')
fig = plt.figure(figsize=(10,8))
ax = sns.barplot(x='count', y='feedback', data=feedback, hue='churn_risk_score')
plt.title('Churn Risk based on Feedback')
for i in ax.containers:
ax.bar_label(i,)
handles, labels = ax.get_legend_handles_labels()
plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='lower right')
st.pyplot(fig)
st.markdown('---')
st.write('## Membership')
membership = data.groupby(['churn_risk_score', 'membership_category']).size().reset_index(name='count')
fig = plt.figure(figsize=(10,8))
ax = sns.barplot(x='count', y='membership_category', data=membership, hue='churn_risk_score')
plt.title("Churn Risk based on user's membership")
for i in ax.containers:
ax.bar_label(i,)
handles, labels = ax.get_legend_handles_labels()
plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='lower right')
st.pyplot(fig)
st.markdown('---')
st.write('Internet Service used by Customers')
service = data.groupby(['internet_option','churn_risk_score']).size().reset_index(name='count')
fig = plt.figure(figsize=(12,8))
ax = sns.barplot(x='count', y='internet_option', data=service, hue='churn_risk_score')
plt.title("Churn Risk based on user's membership")
for i in ax.containers:
ax.bar_label(i,)
handles, labels = ax.get_legend_handles_labels()
plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='lower right')
st.pyplot(fig)
service = data.groupby(['internet_option','feedback']).size().reset_index(name='count')
fig = plt.figure(figsize=(30,8))
ax = sns.barplot(x='internet_option', y='count', data=service, hue='feedback')
plt.title("Churn Risk based on user's internet option")
for i in ax.containers:
ax.bar_label(i,)
handles, labels = ax.get_legend_handles_labels()
plt.legend(handles=handles,loc='lower right')
st.pyplot(fig)
if __name__ == '__main__':
run()