|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import functools |
|
import operator |
|
import re |
|
from typing import Protocol, Sequence, cast |
|
|
|
from . import ExifTags, Image, ImagePalette |
|
|
|
|
|
|
|
|
|
|
|
def _border(border: int | tuple[int, ...]) -> tuple[int, int, int, int]: |
|
if isinstance(border, tuple): |
|
if len(border) == 2: |
|
left, top = right, bottom = border |
|
elif len(border) == 4: |
|
left, top, right, bottom = border |
|
else: |
|
left = top = right = bottom = border |
|
return left, top, right, bottom |
|
|
|
|
|
def _color(color: str | int | tuple[int, ...], mode: str) -> int | tuple[int, ...]: |
|
if isinstance(color, str): |
|
from . import ImageColor |
|
|
|
color = ImageColor.getcolor(color, mode) |
|
return color |
|
|
|
|
|
def _lut(image: Image.Image, lut: list[int]) -> Image.Image: |
|
if image.mode == "P": |
|
|
|
msg = "mode P support coming soon" |
|
raise NotImplementedError(msg) |
|
elif image.mode in ("L", "RGB"): |
|
if image.mode == "RGB" and len(lut) == 256: |
|
lut = lut + lut + lut |
|
return image.point(lut) |
|
else: |
|
msg = f"not supported for mode {image.mode}" |
|
raise OSError(msg) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def autocontrast( |
|
image: Image.Image, |
|
cutoff: float | tuple[float, float] = 0, |
|
ignore: int | Sequence[int] | None = None, |
|
mask: Image.Image | None = None, |
|
preserve_tone: bool = False, |
|
) -> Image.Image: |
|
""" |
|
Maximize (normalize) image contrast. This function calculates a |
|
histogram of the input image (or mask region), removes ``cutoff`` percent of the |
|
lightest and darkest pixels from the histogram, and remaps the image |
|
so that the darkest pixel becomes black (0), and the lightest |
|
becomes white (255). |
|
|
|
:param image: The image to process. |
|
:param cutoff: The percent to cut off from the histogram on the low and |
|
high ends. Either a tuple of (low, high), or a single |
|
number for both. |
|
:param ignore: The background pixel value (use None for no background). |
|
:param mask: Histogram used in contrast operation is computed using pixels |
|
within the mask. If no mask is given the entire image is used |
|
for histogram computation. |
|
:param preserve_tone: Preserve image tone in Photoshop-like style autocontrast. |
|
|
|
.. versionadded:: 8.2.0 |
|
|
|
:return: An image. |
|
""" |
|
if preserve_tone: |
|
histogram = image.convert("L").histogram(mask) |
|
else: |
|
histogram = image.histogram(mask) |
|
|
|
lut = [] |
|
for layer in range(0, len(histogram), 256): |
|
h = histogram[layer : layer + 256] |
|
if ignore is not None: |
|
|
|
if isinstance(ignore, int): |
|
h[ignore] = 0 |
|
else: |
|
for ix in ignore: |
|
h[ix] = 0 |
|
if cutoff: |
|
|
|
if not isinstance(cutoff, tuple): |
|
cutoff = (cutoff, cutoff) |
|
|
|
n = 0 |
|
for ix in range(256): |
|
n = n + h[ix] |
|
|
|
cut = int(n * cutoff[0] // 100) |
|
for lo in range(256): |
|
if cut > h[lo]: |
|
cut = cut - h[lo] |
|
h[lo] = 0 |
|
else: |
|
h[lo] -= cut |
|
cut = 0 |
|
if cut <= 0: |
|
break |
|
|
|
cut = int(n * cutoff[1] // 100) |
|
for hi in range(255, -1, -1): |
|
if cut > h[hi]: |
|
cut = cut - h[hi] |
|
h[hi] = 0 |
|
else: |
|
h[hi] -= cut |
|
cut = 0 |
|
if cut <= 0: |
|
break |
|
|
|
for lo in range(256): |
|
if h[lo]: |
|
break |
|
for hi in range(255, -1, -1): |
|
if h[hi]: |
|
break |
|
if hi <= lo: |
|
|
|
lut.extend(list(range(256))) |
|
else: |
|
scale = 255.0 / (hi - lo) |
|
offset = -lo * scale |
|
for ix in range(256): |
|
ix = int(ix * scale + offset) |
|
if ix < 0: |
|
ix = 0 |
|
elif ix > 255: |
|
ix = 255 |
|
lut.append(ix) |
|
return _lut(image, lut) |
|
|
|
|
|
def colorize( |
|
image: Image.Image, |
|
black: str | tuple[int, ...], |
|
white: str | tuple[int, ...], |
|
mid: str | int | tuple[int, ...] | None = None, |
|
blackpoint: int = 0, |
|
whitepoint: int = 255, |
|
midpoint: int = 127, |
|
) -> Image.Image: |
|
""" |
|
Colorize grayscale image. |
|
This function calculates a color wedge which maps all black pixels in |
|
the source image to the first color and all white pixels to the |
|
second color. If ``mid`` is specified, it uses three-color mapping. |
|
The ``black`` and ``white`` arguments should be RGB tuples or color names; |
|
optionally you can use three-color mapping by also specifying ``mid``. |
|
Mapping positions for any of the colors can be specified |
|
(e.g. ``blackpoint``), where these parameters are the integer |
|
value corresponding to where the corresponding color should be mapped. |
|
These parameters must have logical order, such that |
|
``blackpoint <= midpoint <= whitepoint`` (if ``mid`` is specified). |
|
|
|
:param image: The image to colorize. |
|
:param black: The color to use for black input pixels. |
|
:param white: The color to use for white input pixels. |
|
:param mid: The color to use for midtone input pixels. |
|
:param blackpoint: an int value [0, 255] for the black mapping. |
|
:param whitepoint: an int value [0, 255] for the white mapping. |
|
:param midpoint: an int value [0, 255] for the midtone mapping. |
|
:return: An image. |
|
""" |
|
|
|
|
|
assert image.mode == "L" |
|
if mid is None: |
|
assert 0 <= blackpoint <= whitepoint <= 255 |
|
else: |
|
assert 0 <= blackpoint <= midpoint <= whitepoint <= 255 |
|
|
|
|
|
rgb_black = cast(Sequence[int], _color(black, "RGB")) |
|
rgb_white = cast(Sequence[int], _color(white, "RGB")) |
|
rgb_mid = cast(Sequence[int], _color(mid, "RGB")) if mid is not None else None |
|
|
|
|
|
red = [] |
|
green = [] |
|
blue = [] |
|
|
|
|
|
for i in range(0, blackpoint): |
|
red.append(rgb_black[0]) |
|
green.append(rgb_black[1]) |
|
blue.append(rgb_black[2]) |
|
|
|
|
|
if rgb_mid is None: |
|
range_map = range(0, whitepoint - blackpoint) |
|
|
|
for i in range_map: |
|
red.append( |
|
rgb_black[0] + i * (rgb_white[0] - rgb_black[0]) // len(range_map) |
|
) |
|
green.append( |
|
rgb_black[1] + i * (rgb_white[1] - rgb_black[1]) // len(range_map) |
|
) |
|
blue.append( |
|
rgb_black[2] + i * (rgb_white[2] - rgb_black[2]) // len(range_map) |
|
) |
|
|
|
|
|
else: |
|
range_map1 = range(0, midpoint - blackpoint) |
|
range_map2 = range(0, whitepoint - midpoint) |
|
|
|
for i in range_map1: |
|
red.append( |
|
rgb_black[0] + i * (rgb_mid[0] - rgb_black[0]) // len(range_map1) |
|
) |
|
green.append( |
|
rgb_black[1] + i * (rgb_mid[1] - rgb_black[1]) // len(range_map1) |
|
) |
|
blue.append( |
|
rgb_black[2] + i * (rgb_mid[2] - rgb_black[2]) // len(range_map1) |
|
) |
|
for i in range_map2: |
|
red.append(rgb_mid[0] + i * (rgb_white[0] - rgb_mid[0]) // len(range_map2)) |
|
green.append( |
|
rgb_mid[1] + i * (rgb_white[1] - rgb_mid[1]) // len(range_map2) |
|
) |
|
blue.append(rgb_mid[2] + i * (rgb_white[2] - rgb_mid[2]) // len(range_map2)) |
|
|
|
|
|
for i in range(0, 256 - whitepoint): |
|
red.append(rgb_white[0]) |
|
green.append(rgb_white[1]) |
|
blue.append(rgb_white[2]) |
|
|
|
|
|
image = image.convert("RGB") |
|
return _lut(image, red + green + blue) |
|
|
|
|
|
def contain( |
|
image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC |
|
) -> Image.Image: |
|
""" |
|
Returns a resized version of the image, set to the maximum width and height |
|
within the requested size, while maintaining the original aspect ratio. |
|
|
|
:param image: The image to resize. |
|
:param size: The requested output size in pixels, given as a |
|
(width, height) tuple. |
|
:param method: Resampling method to use. Default is |
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`. |
|
See :ref:`concept-filters`. |
|
:return: An image. |
|
""" |
|
|
|
im_ratio = image.width / image.height |
|
dest_ratio = size[0] / size[1] |
|
|
|
if im_ratio != dest_ratio: |
|
if im_ratio > dest_ratio: |
|
new_height = round(image.height / image.width * size[0]) |
|
if new_height != size[1]: |
|
size = (size[0], new_height) |
|
else: |
|
new_width = round(image.width / image.height * size[1]) |
|
if new_width != size[0]: |
|
size = (new_width, size[1]) |
|
return image.resize(size, resample=method) |
|
|
|
|
|
def cover( |
|
image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC |
|
) -> Image.Image: |
|
""" |
|
Returns a resized version of the image, so that the requested size is |
|
covered, while maintaining the original aspect ratio. |
|
|
|
:param image: The image to resize. |
|
:param size: The requested output size in pixels, given as a |
|
(width, height) tuple. |
|
:param method: Resampling method to use. Default is |
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`. |
|
See :ref:`concept-filters`. |
|
:return: An image. |
|
""" |
|
|
|
im_ratio = image.width / image.height |
|
dest_ratio = size[0] / size[1] |
|
|
|
if im_ratio != dest_ratio: |
|
if im_ratio < dest_ratio: |
|
new_height = round(image.height / image.width * size[0]) |
|
if new_height != size[1]: |
|
size = (size[0], new_height) |
|
else: |
|
new_width = round(image.width / image.height * size[1]) |
|
if new_width != size[0]: |
|
size = (new_width, size[1]) |
|
return image.resize(size, resample=method) |
|
|
|
|
|
def pad( |
|
image: Image.Image, |
|
size: tuple[int, int], |
|
method: int = Image.Resampling.BICUBIC, |
|
color: str | int | tuple[int, ...] | None = None, |
|
centering: tuple[float, float] = (0.5, 0.5), |
|
) -> Image.Image: |
|
""" |
|
Returns a resized and padded version of the image, expanded to fill the |
|
requested aspect ratio and size. |
|
|
|
:param image: The image to resize and crop. |
|
:param size: The requested output size in pixels, given as a |
|
(width, height) tuple. |
|
:param method: Resampling method to use. Default is |
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`. |
|
See :ref:`concept-filters`. |
|
:param color: The background color of the padded image. |
|
:param centering: Control the position of the original image within the |
|
padded version. |
|
|
|
(0.5, 0.5) will keep the image centered |
|
(0, 0) will keep the image aligned to the top left |
|
(1, 1) will keep the image aligned to the bottom |
|
right |
|
:return: An image. |
|
""" |
|
|
|
resized = contain(image, size, method) |
|
if resized.size == size: |
|
out = resized |
|
else: |
|
out = Image.new(image.mode, size, color) |
|
if resized.palette: |
|
out.putpalette(resized.getpalette()) |
|
if resized.width != size[0]: |
|
x = round((size[0] - resized.width) * max(0, min(centering[0], 1))) |
|
out.paste(resized, (x, 0)) |
|
else: |
|
y = round((size[1] - resized.height) * max(0, min(centering[1], 1))) |
|
out.paste(resized, (0, y)) |
|
return out |
|
|
|
|
|
def crop(image: Image.Image, border: int = 0) -> Image.Image: |
|
""" |
|
Remove border from image. The same amount of pixels are removed |
|
from all four sides. This function works on all image modes. |
|
|
|
.. seealso:: :py:meth:`~PIL.Image.Image.crop` |
|
|
|
:param image: The image to crop. |
|
:param border: The number of pixels to remove. |
|
:return: An image. |
|
""" |
|
left, top, right, bottom = _border(border) |
|
return image.crop((left, top, image.size[0] - right, image.size[1] - bottom)) |
|
|
|
|
|
def scale( |
|
image: Image.Image, factor: float, resample: int = Image.Resampling.BICUBIC |
|
) -> Image.Image: |
|
""" |
|
Returns a rescaled image by a specific factor given in parameter. |
|
A factor greater than 1 expands the image, between 0 and 1 contracts the |
|
image. |
|
|
|
:param image: The image to rescale. |
|
:param factor: The expansion factor, as a float. |
|
:param resample: Resampling method to use. Default is |
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`. |
|
See :ref:`concept-filters`. |
|
:returns: An :py:class:`~PIL.Image.Image` object. |
|
""" |
|
if factor == 1: |
|
return image.copy() |
|
elif factor <= 0: |
|
msg = "the factor must be greater than 0" |
|
raise ValueError(msg) |
|
else: |
|
size = (round(factor * image.width), round(factor * image.height)) |
|
return image.resize(size, resample) |
|
|
|
|
|
class SupportsGetMesh(Protocol): |
|
""" |
|
An object that supports the ``getmesh`` method, taking an image as an |
|
argument, and returning a list of tuples. Each tuple contains two tuples, |
|
the source box as a tuple of 4 integers, and a tuple of 8 integers for the |
|
final quadrilateral, in order of top left, bottom left, bottom right, top |
|
right. |
|
""" |
|
|
|
def getmesh( |
|
self, image: Image.Image |
|
) -> list[ |
|
tuple[tuple[int, int, int, int], tuple[int, int, int, int, int, int, int, int]] |
|
]: ... |
|
|
|
|
|
def deform( |
|
image: Image.Image, |
|
deformer: SupportsGetMesh, |
|
resample: int = Image.Resampling.BILINEAR, |
|
) -> Image.Image: |
|
""" |
|
Deform the image. |
|
|
|
:param image: The image to deform. |
|
:param deformer: A deformer object. Any object that implements a |
|
``getmesh`` method can be used. |
|
:param resample: An optional resampling filter. Same values possible as |
|
in the PIL.Image.transform function. |
|
:return: An image. |
|
""" |
|
return image.transform( |
|
image.size, Image.Transform.MESH, deformer.getmesh(image), resample |
|
) |
|
|
|
|
|
def equalize(image: Image.Image, mask: Image.Image | None = None) -> Image.Image: |
|
""" |
|
Equalize the image histogram. This function applies a non-linear |
|
mapping to the input image, in order to create a uniform |
|
distribution of grayscale values in the output image. |
|
|
|
:param image: The image to equalize. |
|
:param mask: An optional mask. If given, only the pixels selected by |
|
the mask are included in the analysis. |
|
:return: An image. |
|
""" |
|
if image.mode == "P": |
|
image = image.convert("RGB") |
|
h = image.histogram(mask) |
|
lut = [] |
|
for b in range(0, len(h), 256): |
|
histo = [_f for _f in h[b : b + 256] if _f] |
|
if len(histo) <= 1: |
|
lut.extend(list(range(256))) |
|
else: |
|
step = (functools.reduce(operator.add, histo) - histo[-1]) // 255 |
|
if not step: |
|
lut.extend(list(range(256))) |
|
else: |
|
n = step // 2 |
|
for i in range(256): |
|
lut.append(n // step) |
|
n = n + h[i + b] |
|
return _lut(image, lut) |
|
|
|
|
|
def expand( |
|
image: Image.Image, |
|
border: int | tuple[int, ...] = 0, |
|
fill: str | int | tuple[int, ...] = 0, |
|
) -> Image.Image: |
|
""" |
|
Add border to the image |
|
|
|
:param image: The image to expand. |
|
:param border: Border width, in pixels. |
|
:param fill: Pixel fill value (a color value). Default is 0 (black). |
|
:return: An image. |
|
""" |
|
left, top, right, bottom = _border(border) |
|
width = left + image.size[0] + right |
|
height = top + image.size[1] + bottom |
|
color = _color(fill, image.mode) |
|
if image.palette: |
|
palette = ImagePalette.ImagePalette(palette=image.getpalette()) |
|
if isinstance(color, tuple) and (len(color) == 3 or len(color) == 4): |
|
color = palette.getcolor(color) |
|
else: |
|
palette = None |
|
out = Image.new(image.mode, (width, height), color) |
|
if palette: |
|
out.putpalette(palette.palette) |
|
out.paste(image, (left, top)) |
|
return out |
|
|
|
|
|
def fit( |
|
image: Image.Image, |
|
size: tuple[int, int], |
|
method: int = Image.Resampling.BICUBIC, |
|
bleed: float = 0.0, |
|
centering: tuple[float, float] = (0.5, 0.5), |
|
) -> Image.Image: |
|
""" |
|
Returns a resized and cropped version of the image, cropped to the |
|
requested aspect ratio and size. |
|
|
|
This function was contributed by Kevin Cazabon. |
|
|
|
:param image: The image to resize and crop. |
|
:param size: The requested output size in pixels, given as a |
|
(width, height) tuple. |
|
:param method: Resampling method to use. Default is |
|
:py:attr:`~PIL.Image.Resampling.BICUBIC`. |
|
See :ref:`concept-filters`. |
|
:param bleed: Remove a border around the outside of the image from all |
|
four edges. The value is a decimal percentage (use 0.01 for |
|
one percent). The default value is 0 (no border). |
|
Cannot be greater than or equal to 0.5. |
|
:param centering: Control the cropping position. Use (0.5, 0.5) for |
|
center cropping (e.g. if cropping the width, take 50% off |
|
of the left side, and therefore 50% off the right side). |
|
(0.0, 0.0) will crop from the top left corner (i.e. if |
|
cropping the width, take all of the crop off of the right |
|
side, and if cropping the height, take all of it off the |
|
bottom). (1.0, 0.0) will crop from the bottom left |
|
corner, etc. (i.e. if cropping the width, take all of the |
|
crop off the left side, and if cropping the height take |
|
none from the top, and therefore all off the bottom). |
|
:return: An image. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
centering_x, centering_y = centering |
|
|
|
if not 0.0 <= centering_x <= 1.0: |
|
centering_x = 0.5 |
|
if not 0.0 <= centering_y <= 1.0: |
|
centering_y = 0.5 |
|
|
|
if not 0.0 <= bleed < 0.5: |
|
bleed = 0.0 |
|
|
|
|
|
|
|
|
|
|
|
bleed_pixels = (bleed * image.size[0], bleed * image.size[1]) |
|
|
|
live_size = ( |
|
image.size[0] - bleed_pixels[0] * 2, |
|
image.size[1] - bleed_pixels[1] * 2, |
|
) |
|
|
|
|
|
live_size_ratio = live_size[0] / live_size[1] |
|
|
|
|
|
output_ratio = size[0] / size[1] |
|
|
|
|
|
if live_size_ratio == output_ratio: |
|
|
|
crop_width = live_size[0] |
|
crop_height = live_size[1] |
|
elif live_size_ratio >= output_ratio: |
|
|
|
crop_width = output_ratio * live_size[1] |
|
crop_height = live_size[1] |
|
else: |
|
|
|
crop_width = live_size[0] |
|
crop_height = live_size[0] / output_ratio |
|
|
|
|
|
crop_left = bleed_pixels[0] + (live_size[0] - crop_width) * centering_x |
|
crop_top = bleed_pixels[1] + (live_size[1] - crop_height) * centering_y |
|
|
|
crop = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height) |
|
|
|
|
|
return image.resize(size, method, box=crop) |
|
|
|
|
|
def flip(image: Image.Image) -> Image.Image: |
|
""" |
|
Flip the image vertically (top to bottom). |
|
|
|
:param image: The image to flip. |
|
:return: An image. |
|
""" |
|
return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM) |
|
|
|
|
|
def grayscale(image: Image.Image) -> Image.Image: |
|
""" |
|
Convert the image to grayscale. |
|
|
|
:param image: The image to convert. |
|
:return: An image. |
|
""" |
|
return image.convert("L") |
|
|
|
|
|
def invert(image: Image.Image) -> Image.Image: |
|
""" |
|
Invert (negate) the image. |
|
|
|
:param image: The image to invert. |
|
:return: An image. |
|
""" |
|
lut = list(range(255, -1, -1)) |
|
return image.point(lut) if image.mode == "1" else _lut(image, lut) |
|
|
|
|
|
def mirror(image: Image.Image) -> Image.Image: |
|
""" |
|
Flip image horizontally (left to right). |
|
|
|
:param image: The image to mirror. |
|
:return: An image. |
|
""" |
|
return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT) |
|
|
|
|
|
def posterize(image: Image.Image, bits: int) -> Image.Image: |
|
""" |
|
Reduce the number of bits for each color channel. |
|
|
|
:param image: The image to posterize. |
|
:param bits: The number of bits to keep for each channel (1-8). |
|
:return: An image. |
|
""" |
|
mask = ~(2 ** (8 - bits) - 1) |
|
lut = [i & mask for i in range(256)] |
|
return _lut(image, lut) |
|
|
|
|
|
def solarize(image: Image.Image, threshold: int = 128) -> Image.Image: |
|
""" |
|
Invert all pixel values above a threshold. |
|
|
|
:param image: The image to solarize. |
|
:param threshold: All pixels above this grayscale level are inverted. |
|
:return: An image. |
|
""" |
|
lut = [] |
|
for i in range(256): |
|
if i < threshold: |
|
lut.append(i) |
|
else: |
|
lut.append(255 - i) |
|
return _lut(image, lut) |
|
|
|
|
|
def exif_transpose(image: Image.Image, *, in_place: bool = False) -> Image.Image | None: |
|
""" |
|
If an image has an EXIF Orientation tag, other than 1, transpose the image |
|
accordingly, and remove the orientation data. |
|
|
|
:param image: The image to transpose. |
|
:param in_place: Boolean. Keyword-only argument. |
|
If ``True``, the original image is modified in-place, and ``None`` is returned. |
|
If ``False`` (default), a new :py:class:`~PIL.Image.Image` object is returned |
|
with the transposition applied. If there is no transposition, a copy of the |
|
image will be returned. |
|
""" |
|
image.load() |
|
image_exif = image.getexif() |
|
orientation = image_exif.get(ExifTags.Base.Orientation, 1) |
|
method = { |
|
2: Image.Transpose.FLIP_LEFT_RIGHT, |
|
3: Image.Transpose.ROTATE_180, |
|
4: Image.Transpose.FLIP_TOP_BOTTOM, |
|
5: Image.Transpose.TRANSPOSE, |
|
6: Image.Transpose.ROTATE_270, |
|
7: Image.Transpose.TRANSVERSE, |
|
8: Image.Transpose.ROTATE_90, |
|
}.get(orientation) |
|
if method is not None: |
|
transposed_image = image.transpose(method) |
|
if in_place: |
|
image.im = transposed_image.im |
|
image.pyaccess = None |
|
image._size = transposed_image._size |
|
exif_image = image if in_place else transposed_image |
|
|
|
exif = exif_image.getexif() |
|
if ExifTags.Base.Orientation in exif: |
|
del exif[ExifTags.Base.Orientation] |
|
if "exif" in exif_image.info: |
|
exif_image.info["exif"] = exif.tobytes() |
|
elif "Raw profile type exif" in exif_image.info: |
|
exif_image.info["Raw profile type exif"] = exif.tobytes().hex() |
|
for key in ("XML:com.adobe.xmp", "xmp"): |
|
if key in exif_image.info: |
|
for pattern in ( |
|
r'tiff:Orientation="([0-9])"', |
|
r"<tiff:Orientation>([0-9])</tiff:Orientation>", |
|
): |
|
value = exif_image.info[key] |
|
exif_image.info[key] = ( |
|
re.sub(pattern, "", value) |
|
if isinstance(value, str) |
|
else re.sub(pattern.encode(), b"", value) |
|
) |
|
if not in_place: |
|
return transposed_image |
|
elif not in_place: |
|
return image.copy() |
|
return None |
|
|