Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -41,14 +41,14 @@ def get_hail_data(address, start_date, end_date, radius_miles, get_max):
|
|
| 41 |
# radius = int(np.ceil(radius_miles*1.6/resolution))
|
| 42 |
|
| 43 |
|
| 44 |
-
start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
|
| 45 |
-
end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
|
| 46 |
-
date_years = pd.date_range(start=start_date, end=end_date, freq='M')
|
| 47 |
-
date_range_days = pd.date_range(start_date, end_date)
|
| 48 |
-
years = list(set([d.year for d in date_years]))
|
| 49 |
-
|
| 50 |
-
if len(years) == 0:
|
| 51 |
-
|
| 52 |
|
| 53 |
# Geocode Address
|
| 54 |
lat, lon= geocode_address(address)
|
|
@@ -60,64 +60,64 @@ def get_hail_data(address, start_date, end_date, radius_miles, get_max):
|
|
| 60 |
row, col = rasterio.transform.rowcol(transform, lon, lat)
|
| 61 |
|
| 62 |
|
| 63 |
-
files = [
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
]
|
| 69 |
-
|
| 70 |
-
files_choosen = [i for i in files if any(i for j in years if str(j) in i)]
|
| 71 |
-
|
| 72 |
-
# Query and Collect H5 Data
|
| 73 |
-
all_data = []
|
| 74 |
-
all_dates = []
|
| 75 |
-
for file in files_choosen:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
data_all = np.vstack(all_data)
|
| 91 |
-
dates_all = np.concatenate(all_dates)
|
| 92 |
-
|
| 93 |
-
# Convert to Inches
|
| 94 |
-
data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
|
| 95 |
-
|
| 96 |
-
# Get Radius of Data
|
| 97 |
-
disk_mask = np.where(disk(radius_miles) == 1, True, False)
|
| 98 |
-
data_mat = np.where(disk_mask, data_mat, -1).round(3)
|
| 99 |
-
|
| 100 |
-
# Process to DataFrame
|
| 101 |
-
# Find Max of Data
|
| 102 |
-
if get_max == True:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
# Get all Data
|
| 107 |
-
else:
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d')
|
| 113 |
-
df_data = df_data.set_index('Date')
|
| 114 |
-
|
| 115 |
-
df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(
|
| 116 |
-
|
| 117 |
-
df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d')
|
| 118 |
-
|
| 119 |
-
return df_data
|
| 120 |
-
|
| 121 |
|
| 122 |
@app.get('/Hail_Docker_Data')
|
| 123 |
async def predict(address: str, start_date: str, end_date: str, radius_miles: int, get_max: bool):
|
|
@@ -128,5 +128,6 @@ async def predict(address: str, start_date: str, end_date: str, radius_miles: in
|
|
| 128 |
except:
|
| 129 |
results = pd.DataFrame({'Date': ['error'], 'Hail_max': ['error']})
|
| 130 |
|
| 131 |
-
return results.to_json()
|
|
|
|
| 132 |
|
|
|
|
| 41 |
# radius = int(np.ceil(radius_miles*1.6/resolution))
|
| 42 |
|
| 43 |
|
| 44 |
+
# start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d')
|
| 45 |
+
# end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d')
|
| 46 |
+
# date_years = pd.date_range(start=start_date, end=end_date, freq='M')
|
| 47 |
+
# date_range_days = pd.date_range(start_date, end_date)
|
| 48 |
+
# years = list(set([d.year for d in date_years]))
|
| 49 |
+
|
| 50 |
+
# if len(years) == 0:
|
| 51 |
+
# years = [pd.Timestamp(start_date).year]
|
| 52 |
|
| 53 |
# Geocode Address
|
| 54 |
lat, lon= geocode_address(address)
|
|
|
|
| 60 |
row, col = rasterio.transform.rowcol(transform, lon, lat)
|
| 61 |
|
| 62 |
|
| 63 |
+
# files = [
|
| 64 |
+
# 'Data/2023_hail.h5',
|
| 65 |
+
# 'Data/2022_hail.h5',
|
| 66 |
+
# 'Data/2021_hail.h5',
|
| 67 |
+
# 'Data/2020_hail.h5'
|
| 68 |
+
# ]
|
| 69 |
+
|
| 70 |
+
# files_choosen = [i for i in files if any(i for j in years if str(j) in i)]
|
| 71 |
+
|
| 72 |
+
# # Query and Collect H5 Data
|
| 73 |
+
# all_data = []
|
| 74 |
+
# all_dates = []
|
| 75 |
+
# for file in files_choosen:
|
| 76 |
+
# with h5py.File(file, 'r') as f:
|
| 77 |
+
# # Get Dates from H5
|
| 78 |
+
# dates = f['dates'][:]
|
| 79 |
+
# date_idx = np.where((dates >= int(start_date))
|
| 80 |
+
# & (dates <= int(end_date)))[0]
|
| 81 |
+
|
| 82 |
+
# # Select Data by Date and Radius
|
| 83 |
+
# dates = dates[date_idx]
|
| 84 |
+
# data = f['hail'][date_idx, row-radius_miles:row +
|
| 85 |
+
# radius_miles+1, col-radius_miles:col+radius_miles+1]
|
| 86 |
+
|
| 87 |
+
# all_data.append(data)
|
| 88 |
+
# all_dates.append(dates)
|
| 89 |
+
|
| 90 |
+
# data_all = np.vstack(all_data)
|
| 91 |
+
# dates_all = np.concatenate(all_dates)
|
| 92 |
+
|
| 93 |
+
# # Convert to Inches
|
| 94 |
+
# data_mat = np.where(data_all < 0, 0, data_all)*0.0393701
|
| 95 |
+
|
| 96 |
+
# # Get Radius of Data
|
| 97 |
+
# disk_mask = np.where(disk(radius_miles) == 1, True, False)
|
| 98 |
+
# data_mat = np.where(disk_mask, data_mat, -1).round(3)
|
| 99 |
+
|
| 100 |
+
# # Process to DataFrame
|
| 101 |
+
# # Find Max of Data
|
| 102 |
+
# if get_max == True:
|
| 103 |
+
# data_max = np.max(data_mat, axis=(1, 2))
|
| 104 |
+
# df_data = pd.DataFrame({'Date': dates_all,
|
| 105 |
+
# 'Hail_max': data_max})
|
| 106 |
+
# # Get all Data
|
| 107 |
+
# else:
|
| 108 |
+
# data_all = list(data_mat)
|
| 109 |
+
# df_data = pd.DataFrame({'Date': dates_all,
|
| 110 |
+
# 'Hail_all': data_all})
|
| 111 |
+
|
| 112 |
+
# df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d')
|
| 113 |
+
# df_data = df_data.set_index('Date')
|
| 114 |
+
|
| 115 |
+
# df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename(
|
| 116 |
+
# columns={'index': 'Date'})
|
| 117 |
+
# df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d')
|
| 118 |
+
|
| 119 |
+
# return df_data
|
| 120 |
+
return lat, lon,row, col
|
| 121 |
|
| 122 |
@app.get('/Hail_Docker_Data')
|
| 123 |
async def predict(address: str, start_date: str, end_date: str, radius_miles: int, get_max: bool):
|
|
|
|
| 128 |
except:
|
| 129 |
results = pd.DataFrame({'Date': ['error'], 'Hail_max': ['error']})
|
| 130 |
|
| 131 |
+
# return results.to_json()
|
| 132 |
+
return results
|
| 133 |
|