Spaces:
Runtime error
Runtime error
import datasets | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
import numpy as np | |
import gradio as gr | |
import torch | |
dataset = datasets.load_dataset("beans") # This should be the same as the first line of Python code in this Colab notebook | |
extractor = AutoFeatureExtractor.from_pretrained("andresgtn/vit-base-bean-health-classifier") | |
model = AutoModelForImageClassification.from_pretrained("andresgtn/vit-base-bean-health-classifier") | |
# add to cuda? | |
#model.eval() | |
#model.to(device) | |
labels = dataset['train'].features['labels'].names | |
def classify(im): | |
features = extractor(im, return_tensors='pt') | |
#features.to(device) # move to gpu as model, if available | |
with torch.no_grad(): | |
logits = model(**features).logits | |
probability = torch.nn.functional.softmax(logits, dim=-1) | |
#probs = probability[0].to('cpu').detach().numpy() | |
probs = probability[0].detach().numpy() | |
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} | |
return confidences | |
#interface = gr.Interface(classify, gr.Image(shape=(200, 200)), 'text') | |
sample_images=[['https://s3.amazonaws.com/moonup/production/uploads/1663933284359-611f9702593efbee33a4f7c9.png'], | |
['https://s3.amazonaws.com/moonup/production/uploads/1663933284374-611f9702593efbee33a4f7c9.png'], | |
['https://s3.amazonaws.com/moonup/production/uploads/1663933284412-611f9702593efbee33a4f7c9.png']] | |
title = "Bean leaf disease classifier" | |
description = "Upload an image of a bean leaf to find out if it is diseased" | |
interface = gr.Interface(classify, gr.Image(shape=(200, 200)), 'label', | |
examples=sample_images, title=title, description=description) | |
#demo.launch() | |
interface.launch(debug=False) |