|
import gradio as gr |
|
import subprocess as sp |
|
from skimage.measure import marching_cubes |
|
import nibabel as nib |
|
from nibabel.processing import resample_to_output |
|
|
|
|
|
def nifti_to_glb(path): |
|
|
|
image = nib.load(path) |
|
resampled = resample_to_output(image, [1, 1, 1], order=1) |
|
data = resampled.get_fdata().astype("uint8") |
|
|
|
|
|
verts, faces, normals, values = marching_cubes(data, 0) |
|
faces += 1 |
|
|
|
with open('prediction.obj', 'w') as thefile: |
|
for item in verts: |
|
thefile.write("v {0} {1} {2}\n".format(item[0],item[1],item[2])) |
|
|
|
for item in normals: |
|
thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2])) |
|
|
|
for item in faces: |
|
thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0],item[1],item[2])) |
|
|
|
|
|
def run_model(input_path): |
|
from livermask.utils.run import run_analysis |
|
|
|
run_analysis(cpu=False, extension='.nii', path=input_path, output='prediction', verbose=True, vessels=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_mesh(mesh_file_name): |
|
path = mesh_file_name.name |
|
run_model(path) |
|
nifti_to_glb("prediction-livermask.nii") |
|
return "./prediction.obj" |
|
|
|
|
|
if __name__ == "__main__": |
|
print("Launching demo...") |
|
demo = gr.Interface( |
|
fn=load_mesh, |
|
inputs=gr.UploadButton(label="Click to Upload a File", file_types=[".nii", ".nii.nz"], file_count="single"), |
|
outputs=gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"), |
|
title="livermask: Automatic Liver Parenchyma segmentation in CT", |
|
description="Using pretrained deep learning model trained on the LiTS17 dataset", |
|
) |
|
demo.launch(server_name="0.0.0.0", server_port=7860) |
|
|