DDMR / Brain_study /data_generator.py
andreped's picture
Renamed module to ddmr
a27d55f
import warnings
import time
import numpy as np
from tensorflow import keras
import os
import h5py
import random
from PIL import Image
import nibabel as nib
from nilearn.image import resample_img
from skimage.exposure import equalize_adapthist
from scipy.ndimage import zoom
import tensorflow as tf
import ddmr.utils.constants as C
from ddmr.utils.operators import min_max_norm
from ddmr.utils.misc import segmentation_cardinal_to_ohe
from ddmr.utils.thin_plate_splines import ThinPlateSplines
from voxelmorph.tf.layers import SpatialTransformer
from Brain_study.format_dataset import SEGMENTATION_NR2LBL_LUT, SEGMENTATION_LBL2NR_LUT
from tensorflow.python.keras.preprocessing.image import Iterator
from tensorflow.python.keras.utils import Sequence
import sys
from collections import defaultdict
from Brain_study.format_dataset import SEGMENTATION_LOC
#import concurrent.futures
#import multiprocessing as mp
import time
class BatchGenerator:
def __init__(self,
directory,
batch_size,
shuffle=True,
split=0.7,
combine_segmentations=True,
labels=['all'],
directory_val=None,
return_isotropic_shape=False):
self.file_directory = directory
self.batch_size = batch_size
self.combine_segmentations = combine_segmentations
self.labels = labels
self.shuffle = shuffle
self.split = split
self.return_isotropic_shape=return_isotropic_shape
if directory_val is None:
self.file_list = [os.path.join(directory, f) for f in os.listdir(directory) if f.endswith(('h5', 'hd5'))]
random.shuffle(self.file_list) if self.shuffle else self.file_list.sort()
self.num_samples = len(self.file_list)
training_samples = self.file_list[:int(self.num_samples * self.split)]
self.train_iter = BatchIterator(training_samples, batch_size, shuffle, combine_segmentations, labels, return_isotropic_shape=return_isotropic_shape)
if self.split < 1.:
validation_samples = list(set(self.file_list) - set(training_samples))
self.validation_iter = BatchIterator(validation_samples, batch_size, shuffle, combine_segmentations, ['all'],
validation=True, return_isotropic_shape=return_isotropic_shape)
else:
self.validation_iter = None
else:
training_samples = [os.path.join(directory, f) for f in os.listdir(directory) if f.endswith(('h5', 'hd5'))]
random.shuffle(training_samples) if self.shuffle else training_samples.sort()
validation_samples = [os.path.join(directory_val, f) for f in os.listdir(directory_val) if f.endswith(('h5', 'hd5'))]
random.shuffle(validation_samples) if self.shuffle else validation_samples.sort()
self.num_samples = len(training_samples) + len(validation_samples)
self.file_list = training_samples + validation_samples
self.train_iter = BatchIterator(training_samples, batch_size, shuffle, combine_segmentations, labels)
self.validation_iter = BatchIterator(validation_samples, batch_size, shuffle, combine_segmentations, labels,
validation=True)
def get_train_generator(self):
return self.train_iter
def get_validation_generator(self):
if self.validation_iter is not None:
return self.validation_iter
else:
raise ValueError('No validation iterator. Split must be < 1.0')
def get_file_list(self):
return self.file_list
def get_data_shape(self):
return self.train_iter.get_data_shape()
ALL_LABELS = {2., 3., 4., 6., 8., 9., 11., 12., 14., 16., 20., 23., 29., 33., 39., 53., 67., 76., 102., 203., 210.,
211., 218., 219., 232., 233., 254., 255.}
ALL_LABELS_LOC = {label: loc for label, loc in zip(ALL_LABELS, range(0, len(ALL_LABELS)))}
class BatchIterator(Sequence):
def __init__(self, file_list, batch_size, shuffle, combine_segmentations=True, labels=['all'],
zero_grads=[64, 64, 64, 3], validation=False, sequential_labels=True,
return_isotropic_shape=False, **kwargs):
# super(BatchIterator, self).__init__(n=len(file_list),
# batch_size=batch_size,
# shuffle=shuffle,
# seed=None,
# **kwargs)
self.batch_size = batch_size
self.shuffle = shuffle
self.file_list = file_list
self.combine_segmentations = combine_segmentations
self.labels = labels
self.zero_grads = np.zeros(zero_grads)
self.idx_list = np.arange(0, len(self.file_list))
self.validation = validation
self.sequential_labels = sequential_labels
self.return_isotropic_shape = return_isotropic_shape
self._initialize()
self.shuffle_samples()
def _initialize(self):
if (isinstance(self.labels[0], str) and self.labels[0].lower() != 'none'):
if self.labels[0] != 'all':
# Labels are tag names. Convert to numeric and check if the expected labels are in sequence or not
self.labels = [SEGMENTATION_LBL2NR_LUT[lbl] for lbl in self.labels]
if not self.sequential_labels:
self.labels = [SEGMENTATION_LOC[lbl] for lbl in self.labels]
self.labels_dict = lambda x: SEGMENTATION_LOC[x] if x in self.labels else 0
else:
self.labels_dict = lambda x: ALL_LABELS_LOC[x] if x in self.labels else 0
else:
# Use all labels
if self.sequential_labels:
self.labels = list(set(SEGMENTATION_LOC.values()))
self.labels_dict = lambda x: SEGMENTATION_LOC[x] if x else 0
else:
self.labels = list(ALL_LABELS)
self.labels_dict = lambda x: ALL_LABELS_LOC[x] if x in self.labels else 0
elif hasattr(self.labels[0], 'lower') and self.labels[0].lower() == 'none':
# self.labels = list()
self.labels_dict = dict()
else:
assert np.all([isinstance(lbl, (int, float)) for lbl in self.labels]), "Labels must be a str, int or float"
# Nothing to do, the self.labels contains a list of numbers
self.num_steps = len(self.file_list) // self.batch_size + (1 if len(self.file_list) % self.batch_size else 0)
#self.executor = concurrent.futures.ProcessPoolExecutor(max_workers=self.batch_size)
#self.mp_pool = mp.Pool(self.batch_size)
with h5py.File(self.file_list[0], 'r') as f:
self.image_shape = list(f['image'][:].shape)
self.segm_shape = self.image_shape.copy()
self.segm_shape[-1] = len(self.labels) if not self.combine_segmentations else 1
self.batch_shape = self.image_shape.copy()
self.batch_shape[-1] = self.image_shape[-1] + self.segm_shape[-1]
def shuffle_samples(self):
np.random.shuffle(self.idx_list)
def __len__(self):
return self.num_steps
def _filter_segmentations(self, segm, segm_labels):
if self.combine_segmentations:
# TODO
warnings.warn('Cannot select labels when combine_segmentations options is active')
if self.labels[0] != 'all':
if set(self.labels).issubset(set(segm_labels)):
# If labels in self.labels are in segm
idx = [ALL_LABELS_LOC[l] for l in self.labels]
segm = segm[..., idx]
else:
# Else we have to collect those labels that are contained and complete with zeros
idx = [ALL_LABELS_LOC[l] for l in list(set(self.labels).intersection(set(segm_labels)))]
aux = segm.copy()
segm = np.zeros(self.segm_shape)
segm[..., :len(idx)] = aux[..., idx]
# TODO: leave the zero-ed segmentations before or after the selected labels based on the order
return segm
def _load_sample(self, file_path):
with h5py.File(file_path, 'r') as f:
img = f['image'][:]
segm = f['segmentation'][:]
isot_shape = f['isotropic_shape'][:]
if not self.combine_segmentations:
if self.sequential_labels:
# TODO: I am assuming I want all the labels
segm = np.squeeze(np.eye(len(self.labels))[segm])
else:
lbls_list = list(ALL_LABELS) if self.labels[0] == 'all' else self.labels
segm = segmentation_cardinal_to_ohe(segm, lbls_list) # Filtering is done here
# aux = np.zeros(self.segm_shape)
# aux[..., :segm.shape[-1]] = segm # Ensure the same shape in case there are missing labels in aux
# segm = aux
# TODO: selection label segm = aux[..., self.labels] but:
# what if aux does not have a label in self.labels??
img = np.asarray(img, dtype=np.float32)
segm = np.asarray(segm, dtype=np.float32)
if not isinstance(self.labels[0], str) or self.labels[0].lower() != 'none' or self.validation: # I expect to ask for the segmentations during val
# segm = self._filter_segmentations(segm, segm_labels)
if self.validation:
ret_val = np.concatenate([img, segm], axis=-1), (img, segm, self.zero_grads), isot_shape
else:
ret_val = np.concatenate([img, segm], axis=-1), (img, self.zero_grads), isot_shape
else:
ret_val = img, (img, self.zero_grads), isot_shape
return ret_val
def __getitem__(self, idx):
in_batch = list()
isotropic_shape = list()
# out_batch = list()
batch_idxs = self.idx_list[idx * self.batch_size:(idx + 1) * self.batch_size]
file_list = [self.file_list[i] for i in batch_idxs]
# if self.batch_size > 1:
# # Multiprocessing to speed up laoding
#
# for ret in self.executor.map(self._load_sample, file_list):
# b, i = ret
# in_batch.append(b)
# # out_batch.append(i)
# else:
# No need for multithreading, we are loading a single file
# in_batch = np.zeros([self.batch_size] + self.batch_shape, dtype=np.float32)
for batch_idx, f in enumerate(file_list):
b, i, isot_shape = self._load_sample(f)
# in_batch[batch_idx, :, :, :, :] = b
if self.return_isotropic_shape:
isotropic_shape.append(isot_shape)
in_batch.append(b)
# out_batch.append(i)
in_batch = np.asarray(in_batch, dtype=np.float32)
ret_val = (in_batch, in_batch)
if self.return_isotropic_shape:
isotropic_shape = np.asarray(isotropic_shape, dtype=np.int)
ret_val += (isotropic_shape,)
# out_batch = np.asarray(out_batch)
return ret_val
def __iter__(self):
"""Create a generator that iterate over the Sequence."""
for item in (self[i] for i in range(len(self))):
yield item
def get_data_shape(self):
return self.batch_shape, self.image_shape, self.segm_shape
def on_epoch_end(self):
self.shuffle_samples()
def get_segmentation_labels(self):
if self.combine_segmentations:
labels = [1]
else:
labels = self.labels
return labels
'''
def get_size(obj, seen=None):
"""Recursively finds size of objects"""
size = sys.getsizeof(obj)
if seen is None:
seen = set()
obj_id = id(obj)
if obj_id in seen:
return 0
# Important mark as seen *before* entering recursion to gracefully handle
# self-referential objects
seen.add(obj_id)
if isinstance(obj, dict):
size += sum([get_size(v, seen) for v in obj.values()])
size += sum([get_size(k, seen) for k in obj.keys()])
elif hasattr(obj, '__dict__'):
size += get_size(obj.__dict__, seen)
elif hasattr(obj, '__iter__') and not isinstance(obj, (str, bytes, bytearray)):
size += sum([get_size(i, seen) for i in obj])
return size
class BatchIterator(Iterator):
def __init__(self, generator, file_list, input_shape, output_shape, batch_size, shuffle, all_files_in_batch):
self.file_list = file_list
self.generator = generator
self.input_shape = input_shape
self.nr_of_inputs = len(input_shape)
self.output_shape = output_shape
self.nr_of_outputs = len(output_shape)
self.all_files_in_batch = all_files_in_batch
self.preload_to_memory = False
self.file_cache = {}
self.max_cache_size = 10*1024
self.verbose = False
if self.preload_to_memory:
for filename, file_index in self.file_list:
file = h5py.File(filename, 'r')
inputs = {}
for name, data in file['input'].items():
inputs[name] = np.copy(data)
self.file_cache[filename] = {'input': inputs, 'output': np.copy(file['output'])}
file.close()
if get_size(self.file_cache) / (1024*1024) >= self.max_cache_size:
print('File cache has reached limit of', self.max_cache_size, 'MBs')
break
epoch_size = len(file_list)
if all_files_in_batch:
epoch_size = len(file_list) * 10
super(BatchIterator, self).__init__(epoch_size, batch_size, shuffle, None)
def _get_sample(self, index):
filename, file_index = self.file_list[index]
if filename in self.file_cache:
file = self.file_cache[filename]
else:
file = h5py.File(filename, 'r')
inputs = []
outputs = []
for name, data in file['input'].items():
inputs.append(data[file_index, :])
for name, data in file['output'].items():
if len(data.shape) > 1:
outputs.append(data[file_index, :])
else:
outputs.append(data[file_index])
#outputs.append(file['output'][file_index, :]) # TODO fix
if filename not in self.file_cache:
file.close()
return inputs, outputs
def _get_random_sample_in_file(self, file_index):
filename = self.file_list[file_index]
file = h5py.File(filename, 'r')
x = file['output/0']
sample = np.random.randint(0, x.shape[0])
#print('Sampling image', sample, 'from file', filename)
inputs = []
outputs = []
for name, data in file['input'].items():
inputs.append(data[sample, :])
for name, data in file['output'].items():
outputs.append(data[file_index, :])
#outputs.append(file['output'][sample, :]) # TODO FIX output
file.close()
return inputs, outputs
def next(self):
with self.lock:
index_array = next(self.index_generator)
#print(len(index_array))
return self._get_batches_of_transformed_samples(index_array)
def _get_batches_of_transformed_samples(self, index_array):
start_batch = time.time()
batches_x = []
batches_y = []
for input_index in range(self.nr_of_inputs):
batches_x.append(np.zeros(tuple([len(index_array)] + list(self.input_shape[input_index]))))
for output_index in range(self.nr_of_outputs):
batches_y.append(np.zeros(tuple([len(index_array)] + list(self.output_shape[output_index]))))
timings_sampling = np.zeros((len(index_array,)))
timings_transform = np.zeros((len(index_array,)))
for batch_index, sample_index in enumerate(index_array):
# Have to copy here in order to not modify original data
start = time.time()
if self.all_files_in_batch:
input, output = self._get_random_sample_in_file(batch_index)
else:
input, output = self._get_sample(sample_index)
timings_sampling[batch_index] = time.time() - start
start = time.time()
input, output = self.generator.transform(input, output)
timings_transform[batch_index] = time.time() - start
#print('inputs', self.nr_of_inputs, len(input))
for input_index in range(self.nr_of_inputs):
batches_x[input_index][batch_index] = input[input_index]
for output_index in range(self.nr_of_outputs):
batches_y[output_index][batch_index] = output[output_index]
elapsed = time.time() - start_batch
if self.verbose:
print('Time to prepare batch:', round(elapsed,3), 'seconds')
print('Sampling mean:', round(timings_sampling.mean(), 3), 'seconds')
print('Transform mean:', round(timings_transform.mean(), 3), 'seconds')
return batches_x, batches_y
CLASSIFICATION = 'classification'
SEGMENTATION = 'segmentation'
class BatchGenerator():
def __init__(self, filelist, all_files_in_batch=False):
self.methods = []
self.args = []
self.crop_width_to = None
self.image_list = []
self.input_shape = []
self.output_shape = []
self.all_files_in_batch = all_files_in_batch
self.transforms = []
if all_files_in_batch:
file = h5py.File(filelist[0], 'r')
for name, data in file['input'].items():
self.input_shape.append(data.shape[1:])
for name, data in file['output'].items():
self.output_shape.append(data.shape[1:])
# TODO fix
#self.output_shape.append(file['output'].shape[1:])
file.close()
self.image_list = filelist
return
# Go through filelist
first = True
for filename in filelist:
samples = None
# Open file to see how many samples it has
file = h5py.File(filename, 'r')
for name, data in file['input'].items():
if first:
self.input_shape.append(data.shape[1:])
samples = data.shape[0]
# TODO fix
for name, data in file['output'].items():
if first:
self.output_shape.append(data.shape[1:])
if samples != data.shape[0]:
raise ValueError()
#self.output_shape.append(file['output'].shape[1:])
if len(self.output_shape) == 1:
self.problem_type = CLASSIFICATION
else:
self.problem_type = SEGMENTATION
file.close()
if samples is None:
raise ValueError()
# Append a tuple to image_list for each image consisting of filename and index
print(filename, samples)
for i in range(samples):
self.image_list.append((filename, i))
first = False
print('Image generator with', len(self.image_list), ' image samples created')
def flow(self, batch_size, shuffle=True):
return BatchIterator(self, self.image_list, self.input_shape, self.output_shape, batch_size, shuffle, self.all_files_in_batch)
def transform(self, inputs, outputs):
#input = input.astype(np.float32) # TODO
#output = output.astype(np.float32)
for input_indices, output_indices, transform in self.transforms:
transform.randomize()
inputs, outputs = transform.transform_all(inputs, outputs, input_indices, output_indices)
return inputs, outputs
def add_transform(self, input_indices: Union[int, List[int], None], output_indices: Union[int, List[int], None], transform: Transform):
if type(input_indices) is int:
input_indices = [input_indices]
if type(output_indices) is int:
output_indices = [output_indices]
self.transforms.append((
input_indices,
output_indices,
transform
))
def get_size(self):
if self.all_files_in_batch:
return 10*len(self.image_list)
else:
return len(self.image_list)
'''